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Abstract

With the rise of digitalization, information retrieval has to cope with increasing amounts
of digitized content. Legal content providers invest a lot of money for building domain-
specific ontologies such as thesauri to retrieve a significantly increased number of
relevant documents. Since 2002, many label propagation methods have been developed
e.g. to identify groups of similar nodes in graphs. Label propagation is a family of
graph-based semi-supervised machine learning algorithms. In this thesis, we will test
the suitability of label propagation methods to extend a thesaurus from the tax law
domain. The graph on which label propagation operates is a similarity graph constructed
from word embeddings. We cover the process from end to end and conduct several
parameter-studies to understand the impact of certain hyper-parameters on the overall
performance. The results are then evaluated in manual studies and compared with a
baseline approach.

Keywords Thesaurus Extension, Legal Tech, Information Retrieval, Label Propagation,
Word Embeddings, Data Science, Machine Learning
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1. Introduction

In today’s society, the amount of available digital information is continuously growing.
Finding the information one needs out of this massive amount of data is called information
retrieval. More formally, Schütze et al. (2008) define information retrieval as

...finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually
stored on computers).

In this thesis, we focus on text as source of information. Nowadays, almost everyone
with a digital device engages in information retrieval multiple times per day. Typical
information retrieval tasks include the use of web search engines and searching one’s
email. Often, the more ambiguous word “search” is used as a synonym for “(information)
retrieval”. Schütze et al. (2008) distinguish information retrieval systems into three
different scales: Web search, where the system has to provide search over billions of
documents. Personal information retrieval, such as Apple’s macOS Spotlight or email
search, where the system provides search over one’s personal documents. And in
between, the space of enterprise, institutional or domain-specific search, where retrieval
might be provided over a company’s internal documents or e.g. specific research
database.

Just as society as a whole evolves into an “information society”, information-intensive
industries and related tasks within the existing industries have become more important.
Under the term “knowledge-based economy”, OCDE (1996) recognized knowledge and
information as the driver of productivity and economic growth. The ability of coping
with lots of information becomes more and more crucial for economic success. People
are expected to dig through masses of text to find the relevant information. Jobs where
information retrieval is central include “analyst” functions like research analysts within
consultancies, and mergers & acquisitions analysts in the finance industry.

In the Legal Domain The focus of this thesis is the legal domain in which information
retrieval systems are central for many tasks as well. We can identify two stakeholders:
First, we have lawyers and attorneys whose work typically is knowledge-based. For a
given case, they need to gather as much information as possible, e.g. on the context
itself1, on the relevant laws, on previous judgments and on assessments by other

1For cases around corporations, this includes the need to collect and analyze relevant information from
within the company.
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1. Introduction

lawyers. Comments around judgments and legislation are often summarized in legal
journals. The second group of stakeholders, legal content (and media) providers, support
their customers, who are mostly lawyers and attorneys, in their work by providing
relevant content. They maintain large databases with legal documents and provide their
customers access to these databases. Examples in Germany include DATEV2, Haufe3,
Wolters Kluwer4, C.H. Beck5 and ottoschmidt6. Access is provided via search. When a
user enters a search query, he expects to be provided with all relevant documents. This is
a major challenge in information retrieval and receives much attention also in the legal
domain, cf. Tamsin Maxwell (2009), Conrad and Lu (2013), and Grabmair et al. (2015).
Efforts in improving legal search systems are counted to the general area of Legal Tech,
which refers to the use of technology and software to provide legal services.

Full-text search as a means for information retrieval In the beginning of computer-
ized information retrieval during the late 1940s, document retrieval was always based
on meta-data like author, title, and keywords, but not on the actual full-text of doc-
uments itself (Schütze et al. 2008). Later, full-text search was employed. Traditional
full-text search finds exact matches to a given search string, corresponding to the search
query (Landthaler et al. 2016). But discovering all relevant documents still remained
challenging. As an example from the legal world, the term “Abwrackprämie” (engl.
scrapping incentive) refers to the bonus Germans received in 2009 when they scrapped
their old car in order to buy a new one. While “Abwrackprämie” was primarily used by
the media, the term used by the government was “Umweltprämie”. A full-text search
for “Abwrackprämie” will therefore not return all documents related to the scraping
incentive concept. We focus on this issue of synonymy (Schütze et al. 2008) - a concept
may be referred to using different words. The search query should be refined to match
documents that include either of the two terms.

Thesauri for Query Expansion To address the synonymy issue, information retrieval
systems try to help the user in expanding the query. For example, they could include
synonyms in the query automatically, or suggest these synonyms or related words to
the user for manual selection. These approaches are called query expansion (Schütze et al.
2008). The most common form of query expansion uses some form of thesaurus. Within
the context of search query expansion, we view a thesaurus as a collection of synonym
sets (“synset”). A synset consists of words that express a common distinct concept. In
general, a thesaurus can contain sets of different word relations, not just synonyms.
Examples are antonyms, abbreviations, broader or narrower terms.

2https://www.datev.de, visited on Nov. 3, 2018
3https://www.haufe.de, visited on Nov. 3, 2018
4https://www.wolterskluwer.de, visited on Nov. 3, 2018
5https://www.chbeck.de, visited on Nov. 3, 2018
6https://www.otto-schmidt.de, visited on Nov. 3, 2018
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1.1. Problem Statement

Figure 1.1.: Demonstration of an automatic search query expansion by Google. For
the query “nlp for law”, documents with the terms “legal” and “natural
language processing” were retrieved as well.

Figure 1.1 shows such an automatic search query expansion for a search with Google:
Although the terms “legal” and “natural language processing” were not part of the
query (“nlp for law”), the query was expanded to these terms as well, as can be seen in
the retrieved results and the bold highlighting of these new terms.

Query expansion is a widely used method to increase the recall7 of search systems.
Thesauri are a common way to implement query expansion. Dirschl (2016) from the legal
content provider Wolters Kluwer call legal thesauri the “backbone of many application
features in JURION [their content platform]”.

1.1. Problem Statement

We have seen that thesauri are a useful means to improve a search system’s recall. The
downside is that creation and maintenance of such thesauri is a laborious, expensive
and error-prone task. Although there exist some large thesauri as WordNet (Miller et al.
1990), these general-purpose thesauri are usually not suited for domain-specific tasks.
Even one common thesaurus for the legal domain is seen as too broad - Dirschl (2016)
state they have multiple smaller, domain-specific thesauri in place, e.g. for areas like
intellectual property law or construction law.

7Recall is the fraction of relevant instances that have been retrieved over the total amount of relevant
instances. As an example: If there are 10 relevant instances in total, a system that retrieved 9 of these
relevant instances would have a recall of 9

10 = 0.9. As search provider, we want our recall to be high.

3



1. Introduction

Figure 1.2.: The main activities around thesauri according to Dirschl (2016).

What is needed At least since the 1950s, there have been attempts by the natural
language processing community to make the process around thesaurus creation more
automated (Harris 1954; Sparck Jones 1964). Figure 1.2 shows the activities around
thesauri derived from Dirschl (2016). First, a thesaurus gets created in a mostly manual
process. It can get enriched, which means that it gets mapped and linked to other
standard thesauri in order to exploit existing public knowledge. Thesaurus maintenance
deals with the continuous update process, i.e. creating new synsets, adding new words
to existing ones or regroup them. All these phases could be supported with sophisticated
technology in an automatic or semi-automatic fashion. It could automatically create
synsets or suggest additions to already manually started synsets. As part of thesaurus
enrichment, it could suggest links between synsets of different thesauri. It could become
a part of the thesaurus maintenance task, e.g. to notify the maintainer when new words
could be added to the synsets or existing synsets should be adjusted.

1.2. Problem Solution

In this thesis, we pursue an approach for finding similar words to extend existing
synsets. We combine two technologies: On the one hand, we use Word Embeddings,
multi-dimensional vector representations for words, where similar words are placed
close to each other. On the other hand, our second device is Label Propagation (LP), a
family of semi-supervised machine learning algorithms that propagates information
from labeled words to unlabeled words. Both technologies are extensively used in
practice, but have not been used together for thesaurus creation yet. We are particularly
motivated from the work at Google (Ravi and Diao 2015)8, where word embeddings and
label propagation are used together on large-scale data to learn emotion associations.

We focus on the use case of supporting thesaurus creation. Concretely, the creator of a
thesaurus first manually has to build a minimal thesaurus with all synsets they want

8Also see this Google AI Blog post: http://ai.googleblog.com/2016/10/graph-powered-machine-
learning-at-google.html, visited on Nov. 3, 2018
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1.2. Problem Solution

Figure 1.3.: Sample word embeddings for a German tax law corpus visualized. Similar
words appear close to each other. The embeddings are projected down to
two dimensions (originally: 400 dimensions).

to support. Then, our approach suggests additions to these existing synsets. These
candidates need to be reviewed and can then be added to the thesaurus, which makes
the approach a semi-automatic one. In the future, this approach could be extended
to other parts of the process shown in Figure 1.2, e.g. by taking the respective word
suggestions into account when determining the links between synsets of different
thesauri, or regularly calculating word suggestions when the underlying text corpus has
changed.

Combining word embeddings with label propagation for thesaurus extension has not
been tried before. With this project, we evaluate whether this combination gives
promising results for further research.

Word Embeddings Our approach is motivated by the improvements in word embed-
ding technologies in the recent years. Word embeddings are vector representations of
words that are related to their semantic meaning. The more similar two words, the
closer their word vectors.9 The computation is based on the distributional hypothesis
by Harris (1954): Words which occur in the same contexts are likely to have a similar
meaning. More details are given in Section 2.2.1. Although word embeddings have
been subject to research since at least the 1980s, especially the work by Mikolov et al.
(2013a) on “word2vec” made it possible to calculate high-quality embeddings even on
large corpora. Word embeddings are useful finding new synonymous words. Words
that are close to existing words in a synset are very promising candidates. Figure 1.3
shows some sample word embeddings from existing synsets visualized. We can easily
observe that similar words appear close to each other. Landthaler et al. (2017) evaluated

9Measured in cosine distance.
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1. Introduction

Figure 1.4.: Word embeddings A and B are labeled with different synsets, the other
embeddings are unlabeled. With a nearest neighbors approach, X would
receive A’s synset. But from the overall structure, one would assume that X
should be added to B’s synset.

the feasibility of the word embedding approach for thesaurus extension and reported
promising results.

But also word embeddings have to be handled with care. Figure 1.4 shows an issue with
simply using the existing synset’s nearest neighbors as synset candidates. The figure
shows some schematic word embeddings. Words A and B are labeled with different
synsets, the other words are not labeled. The goal now is to determine which unlabeled
word should become part of which synset. A simple way would be selecting the nearest
neighbors of each labeled word. But in case of the situation shown in Figure 1.4, this
would lead to an unintuitive result. X is closer to A than to B and therefore would
receive the same label as A. But X has many close neighbors that themselves would be
labeled with B’s label. Although X is not in the direct neighborhood of B, assigning it
the same label as B might be more intuitive. By taking the overall structure into account,
the suggestions would have been better. Label propagation methods can solve this
problem.

Label Propagation Label propagation is a family of semi-supervised graph-based
machine learning algorithms (Bengio et al. 2006). It has promising characteristics for our
use case of extending existing synsets.

• Semi-supervision Semi-supervised algorithms are used to predict labels for un-
labeled data. They use a small amount of labeled data and a large amount of
unlabeled data as training data. For us, this small amount of labeled data corre-
sponds to the words in the thesaurus which already have been assigned to a synset.
And we have a large amount of unlabeled data: The words in the text corpus that
are not part of the thesaurus. Supervised algorithms like the nearest neighbors
method shown in Figure 1.4 just take labeled data into account. A semi-supervised
approach like label propagation would likely consider the small distance between
the unlabeled embeddings and assign all of them to the same label.

6



1.3. Research Process

Figure 1.5.: Intuition of Combining Word Embeddings with Label Propagation for as-
signing unlabeled words to existing synsets

• Scalability Label propagation algorithms can be made scale well to large datasets
and lots of labels. In a blog post by Google10, they note that they have be able to
scale their approaches to billions of nodes, trillions of edges involving billions of
different label types. Our data set involves around 200, 000 nodes and 2000 label
types. In other areas, the number of nodes and labels can be significantly higher.

Label propagation algorithms work on graphs. The graph’s structure needs to be
correlated with the classification goal. In our case, words correspond to graph nodes.
Similar words need to be connected via a small number of edges or edges with low
weight. Word embeddings are multi-dimensional vectors that need to be converted to a
graph so label propagation can be applied. How to do this graph construction is also
subject to our research.

Combination Intuition Figure 1.5 depicts the intuition in combining word embeddings
with label propagation for Thesaurus Extension. First, word embeddings for a text
corpus are generated. The existing thesaurus synsets act as labels. The embeddings with
their labels are converted to a sparsely-labeled graph. With label propagation, labels for
the previously-unlabeled nodes are determined. This labeling corresponds to predicting
to which synset a word should be added, i.e. how a synset should be extended.

1.3. Research Process

Research Questions We formulated five research questions that we tried to answer
during the course of this thesis:

1. How can we get semantic & context information into a graph for LP?
2. How can we model the thesaurus extension problem on the LP technology?
3. Which LP algorithms work best?
4. Is LP a suitable technology for thesaurus extension in the legal domain?
5. How much automation for thesaurus creation is achievable with LP?

10http://ai.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html, visited on Nov.
3, 2018
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1. Introduction

Figure 1.6.: Our design science research process visualized

To answer our research questions, we employed a Design Science process (Hevner
and Chatterjee 2010) which is depicted in Figure 1.6. We have identified the thesaurus
extension problem for legal information retrieval. From data science research, we selected
the word embedding and the label propagation technologies . The design artifact,
a pipeline architecture, covers the phases from an existing thesaurus to producing
candidates for its extension. We need an existing thesaurus that we extend, as well as a
text corpus where we can generate candidates from. For that, we were provided with
a data set on tax law by the legal content provider DATEV. It consists of a text corpus
(130, 000 legal documents) and a handcrafted thesaurus (16, 000 concept classes). The
thesaurus was specifically created to support full-text search on the text corpus.

We defined performance metrics and set up a test environment by using parts of the
thesaurus as test data. There, we evaluated and compared it with baseline approaches.
We used this information to iteratively adjust our pipeline architecture (Design Cycle).
Also, we continuously extended the architecture with alternative word embedding and
label propagation approaches to evaluate them as well (Rigor Cycle). After optimizing
our architecture based on the quantitative evaluation, we conducted a manual qualitative
evaluation. There, we rated the perceived quality of the algorithmic suggestions.

Structure In Chapter 2, we describe the data set in detail and give an overview on
word embedding technologies, label propagation approaches and previous thesaurus
extension research. There, we answer our first research question, how to get semantic
& context information into a graph for label propagation. We line out the pipeline
architecture in Chapter 3. This answers the second research question on how to model
the thesaurus extension problem. In the Quantitative Evaluation, In Chapter 4, we derive
an optimized set of hyper-parameter values. This answers our third research question.
We present the results of our manual Qualitative Evaluation in Chapter 5. In Chapter 6,
we compare our label propagation method with a rather simple baseline approach. The
answers to the two remaining research questions are implied by conclusion in Chapter 7.
We then discuss potential drawbacks of our approach and directions for future work.

8



2. Prerequisites and Related Work

2.1. Data Set

We use a large corpus of German tax law, accompanied by a thesaurus that is specifically
maintained for that corpus. The data is provided by an industry partner of our chair:
DATEV eG, a technical legal services provider that is focused on tax matters. It was
already used in previous research by Landthaler et al. (2017).

2.1.1. Text Corpus

The text corpus contains 132, 581 legal documents of different document types. An
overview of the distribution of different document types is shown in Figure 2.1. The
documents are stored as JSON files. Unprocessed, including all meta-data (e.g. author,
document type, topic, title), these files add up to 3.6 GB. We discard meta-data and
focus on the documents’ full text. All full texts together make up 170, 065, 082 tokens,
out of which 2, 215, 785 tokens are unique. A token consists of characters separated by
whitespace. More statistics can be found in Table 2.1.

Minimum Median Maximum Mean Std. Deviation
Tokens 14 452 304,131 1282.74 4771.65

Table 2.1.: Corpus document size statistics (rounded to two decimals).

2.1.2. Thesaurus

The thesaurus consists of 16,019 concept classes. It holds six different types of relations
(e.g. hyponyms and abbreviations), however we focus on the 12,288 synonym concepts.
These synsets lead to 36,076 keys, with 35,502 unique keys. We use the term “key”
instead of “word” to denote the entries of a synset, as entries sometimes consist of
multiple words, e.g. “Zusatz Tarifvertrag”. Synset sizes range from 2 to 32, with 2 being
the most common size. Table 2.2 shows more statistics on the synset sizes, Figure 2.2
shows a histogram of the synset sizes in the untouched thesaurus.

9



2. Prerequisites and Related Work

Judgments

36%
Essays

22%

Remarks

12%

Directions

6%

Orders

6%
Short Essays

5% Enactments

5% Press Releases
1% Others
7%

Figure 2.1.: The distribution of the different document types that can be found in the
provided text corpus, taken from Landthaler et al. (2017).

Minimum Median Maximum Mean Std. Deviation
Concept Size 2 2 32 2.94 1.58

Table 2.2.: Thesaurus synset size statistics (rounded to two decimals).

Figure 2.2.: Histogram visualizing synset sizes in the untouched thesaurus.

10



2.2. Distributional Semantics

2.1.3. Usage

The text corpus is used to calculate semantic similarities between its words. The
thesaurus’ existing synsets are used as training data. From the training data and via
the word similarity relations, we predict additions to the synsets. For the quantitative
evaluation, we split each synset in the thesaurus into a 50% training and 50% test part.
For the qualitative evaluation, we use the full thesaurus as training data and rate the
suggestions’ quality manually. Both, text corpus and thesaurus, need to be prepared
(pre-processed) to be used in the thesaurus extension. Pre-processing will be discussed
in detail in Chapter 3, Implementation.

2.2. Distributional Semantics

We use word embeddings to represent the semantics of words in vector space. Word
embeddings apply a Distributional Semantics approach. The contexts in which a word
occurs, become key to derive a word meaning’s representation (Clark 2015). This is also
called the distribution of the word’s contexts. Distributional semantics are based on the
Distributional Hypothesis by Harris (1954): Words that occur in the same contexts tend
to be perceived as similar by humans. An Example: From the two sample contexts “I
watched the game” and “We watched the game” we could infer that “I” and “We” are
semantically similar. Of course, many more contexts are needed to infer actual word
similarities. The definition of “context” varies according to the particular technique
being used. A popular approach is to select an n words context window and slide this
window across the whole corpus. Each of the n-term word sets is then regarded as a
context.

We first introduce the word embedding technologies we use in our work. Then, we
show research applying distributional semantics to automate thesaurus creation and
extension.

2.2.1. Word Embedding Technologies

By applying the distributional semantics approach, words from a text corpus can be
embedded into a multi-dimensional vector space. Words are mapped to vectors of real
numbers according to their semantic characteristics. These vectors are called word
embeddings and were initially presented by Hinton et al. (1986). Three popular word
embedding technologies that we use in our work are: word2vec, developed at Google
by Mikolov et al. (2013a), GloVe, developed at Stanford University by Pennington et al.
(2014), and fastText, developed at Facebook by Bojanowski et al. (2017).

Word embeddings represent the semantics of words. We expect words with similar
meaning to have similar vectors. In the three models, the distributional similarity
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between two word vectors is measured by the Cosine Similarity, the cosine of their
enclosing angle (interval [0, 1]). By subtracting the cosine similarity from 1, we get the
Cosine Distance.1 The more similar two words, the lower the cosine distance. We exploit
this fact for finding synonyms.

Baroni et al. (2014) use the term “Distributed Semantic Models” (DSMs) for what we
call word embedding technologies. They distinguish between two main DSM families
for learning word vectors: 1) context-counting models and 2) context-predicting models.2

Counting models are the more traditional way - they construct a (large) co-occurrence
count matrix (words correspond to rows, selected contexts correspond to columns). A
value in the matrix is the count of how often a word appears in a given context. From
there, dimensionality reduction techniques are applied to generate a lower-dimensional
(less columns) matrix where a row corresponds to a vector representation for the
respective word. A classical count-based DSM is Latent Semantic Analysis (LSA) by
Deerwester et al. (1990), GloVe is a newer one (Pennington et al. 2014).

Predictive DSMs either predict the context in a words tends to appear, or predict a
word from its neighbors. Word vectors correspond to weights of a neural network. The
word vectors are initialized randomly. With these initial vectors as weights, the neural
network prediction performance will be poor. The values are adjusted iteratively to
minimize the prediction error. With each iteration, the word vectors are refined and the
model prediction performance increases. They were developed by the neural-network
community (Bengio et al. 2003) and popularized by the works of Mikolov et al. (2013a)
on word2vec.

word2vec word2vec, a predictive DSM, became very successful because it provides
two comparatively simple architectures (shallow, two-layer neural networks), called
CBOW and Skip-gram, that have much lower computational complexity compared
to the previous popular (deep) neural network models. Despite their simplicity and
shallowness, these architectures are able to generate high quality word vectors. Due
to the lower computational complexity, it is possible to compute very accurate high
dimensional word vectors from larger data sets. The CBOW architecture tries to predict
a word from its context, while the Skip-gram architecture predicts surrounding words
given the current word, as is depicted in Figure 2.3. An additional advantage compared
to previous models is that arithmetic calculations tend to correspond to word analogies.
For example, King - Man + Woman corresponds to a vector very close to Queen (Mikolov
et al. 2013b).

1Cosine Distance is not a proper distance metric in the mathematical sense as it does not fulfill the
triangle inequality, but within our use case, this is not an issue.

2Baroni et al. (2014) limit the term “word embeddings” to the context-predicting type of model.
Similarly to other research (Landthaler et al. 2016; Lebret and Collobert 2014), we use the term “embedding”
more generally. We express that words get embedded into a vector space.
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2.2. Distributional Semantics

Figure 2.3.: word2vec Continuous Bag-of-words (CBOW) and Skip-gram training model
architectures, from Mikolov et al. (2013a).

fastText This DSM builds on the word2vec model with the important difference that,
instead of treating words as smallest entity, it operates on a sub-word level. Each word is
now seen as a composite of n-grams, n consecutive characters (with a min_n and max_n
set). For min_n= 3 and max_n= 6, the word where would be represented by: “<wh”,
“whe”, “her”, “ere”, “re>”, “<whe”, “wher”, “here”, “ere>”, “<wher”, “where”, “here>”,
“<where”, “where>”. In addition, the word itself, “<where>”, is added an entity. “<” and
“>” are added as word boundary characters to distinguish prefixes and suffixes from
other character sequences. Each of these n-grams receives a vector representation. This
leads to better performance in particular for rare words because n-grams are shared
between words. Additionally, word vectors for completely unknown words can be
constructed after the training phase, by combining the n-gram vectors needed to build
up the word.

GloVe GloVe is a count-based “response” to the grown popularity of word2vec. One
of its goals was to generate vectors where arithmetic operations express meaning as well.
Pennington et al. (2014) claim to consistently outperform word2vec, with even lower
training time.

2.2.2. Thesaurus Creation and Extension

Thesaurus Creation Even though thesaurus creation is not the main focus of this
thesis, we briefly cover this topic. It has already been an interesting research field for
several decades and provides the groundwork for later works.

There has been considerable research in automating the thesaurus creation process
via distributional similarity approaches. Early approaches include Sparck Jones (1964),

13



2. Prerequisites and Related Work

who investigated how count-based relations can help in grouping words similar to a
thesaurus. Salton (1989) mentions automatic thesaurus construction approaches in order
to improve document vector generation. Grefenstette (1994) gives a broad overview on
the history and need for automatic thesaurus discovery.

Sketch Engine by Rychlỳ and Kilgarriff (2007) is focused on increasing the efficiency of
generating thesauri from large data sets. They automatically identify and remove word
pairs that have nothing in common. To identify “useless” word pairs, they take their
grammatical relation into account. This pruning phase enabled them to process a dataset
with 2 billion words in less than 2 hours, compared to 300 days without the removal.

Kiela et al. (2015) argue that word embeddings capture both similarity and relatedness,
two often incompatible objectives. In specializing embeddings for similarity, they show
improvements for synonym selection. Word embeddings also have been trained to
capture antonym relations (Ono et al. 2015; Nguyen et al. 2016), a word relation that is
also often contained in thesauri. With AutoExtend, Rothe and Schütze (2015) proposed
an extension for word embeddings: Synset embeddings, where a vector corresponds to
a whole synset. Synset vectors then live in the same vector space and can be compared
to words and other synsets via the usual cosine similarity measure. The system can be
extended to other word relation concept like antonyms and just needs regular word
embeddings as input. The concept of “synset embeddings” is an inspiration for our
baseline approach defined in Section 6.1.

Thesaurus Extension Several methods and ideas for automatic thesaurus extension
have been tried out over the years. Examples include Uramoto (1996), Takenobu et al.
(1997), and Meusel et al. (2010). Landthaler et al. (2017) targeted the extension of exiting
synsets in a legal thesaurus via word embeddings. They proposed an intersection
method, where they first train multiple word2vec embedding sets, each time with
different parameters, and then, when determining the synonyms for a certain target
word, intersect the result lists of the different embeddings sets. To select the appropriate
embedding sets to intersect, they introduce the RP-Score. It measures how close members
of existing synsets are positioned to each other. However, in our work we want to try out
a new concept which has not been part of the scientific discussion yet, namely combining
word embedding techniques with label propagation algorithms for semi-supervised
machine learning. For that, word embeddings need to be represented as a graph.

2.3. Graph Construction

In order to apply to label propagation to our problem of thesaurus extension, we need
to construct a graph out of the text corpus’ word embeddings. A word embedding then
corresponds to a graph node. The graph should reflect the neighborhood relationships
between the embeddings. It needs to represent the pairwise similarities/distances. Zhu
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(a) Undirected k-nearest-neighbord graph
with k = 1

(b) ε-neighborhood graph (ε = circles’ ra-
dius)

Figure 2.4.: Sample k-nearest-neighbor and ε-neighborhood graph construction in a
two-dimensional setting.

et al. (2005) and von Luxburg (2007) mention several approaches for the construction of
such a similarity graph. Here, we focus on two well-known concepts: k-nearest-neighbors
graph, and ε-neighborhood graph. Figure 2.4 shows sample graphs for some given points
in a two-dimensional vector space.

k-nearest-neighbors graph An item xi gets connected with another item xj via an
edge if xj is among the k-nearest neighbors of xi. This definition usually leads to a
directed graph.3 To make our graph undirected, we ignore directions. If one of two
nodes is in each other’s k-neighborhood, we add edges in both directions. This is usually
called the k-nearest-neighbor graph (von Luxburg 2007).4

ε-neighborhood graph Here, we connect all points whose pairwise distances are
smaller than ε. This graph is symmetric by definition. Note that for this graph it is
possible for nodes to not have any edges, while in a k-nearest neighbors graph, every
node will have at least k edges. On the other side, many nodes might end up with lots
of edges, if ε is large.

3Example: When thinking of three 1-dimensional points A = 1, B = 2, C = 10, C’s nearest neighbor is B,
but B’s is A. The resulting graph would be directed.

4Another option is to ignore edges that are not mutual - this is called the mutual k-nearest neighbor graph.
We did not investigate this option further.
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Weight Matrix A graph can be stored as a weight matrix - a n× n matrix W where Wij
corresponds to the weight of the edge between node i and j.5 If the weight is 0, the two
nodes are not connected. If all weights are 1, the graph is called unweighted. If weights
differ from each other, the graph is called weighted. We can weight edges e.g. by the
similarity of the nodes. In case of word embeddings, this would be the cosine similarity
value.

2.4. Label Propagation

The “Label Propagation” approach was introduced by Zhu and Ghahramani (2002). It is
a family of algorithms that deals with the semi-supervised learning problem of learning
from labeled and unlabeled data (Bengio et al. 2006).

2.4.1. Semi-supervised Learning in General

In semi-supervised learning, the goal is to predict the labels of unlabeled points. Semi-
supervised learning algorithms like label propagation are good at solving problems
where two consistency assumptions apply (Zhou et al. 2004):

1. Local consistency assumption. Nearby points are likely to have the same label.
2. Global consistency assumption. Points on the same structure are likely to have the

same label.

Supervised learning algorithms like k-nearest-neighbors6 in general consider only the
first assumption of local consistency. An illustrative example from Zhou et al. (2004)
is shown in Figure 2.5. According to the consistency assumption, the data should
be classified as two half-moons. A semi-supervised algorithm can solve this problem
correctly.

In supervised learning, an algorithm tries to infer a function from labeled training data that
generalizes well to unseen data. In contrast, to fulfill the global consistency assumption,
semi-supervised learning algorithms use a mixture of labeled and unlabeled data as
training data, where most of the data is unlabeled. Semi-supervised algorithms make
use of the structure of the overall data - including the unlabeled data. Semi-supervised
algorithms either predict labels for new unknown data (inductive learning) or label the
training data itself (transductive learning). Label propagation performs transductive
learning. This fits our “thesaurus extension” scenario well. The text corpus words are
mapped to word embeddings - the structure of the word embeddings is used to infer
synset labels to the text corpus words themselves.

5A weight matrix is also called adjacency matrix or affinity matrix.
6There, a point gets labeled with the label that occurs most often within his k nearest labeled neighbors.
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(a) Initial data (b) k-NN Result (k = 1) (c) LabelSpreading Result

Figure 2.5.: Classification comparison from Zhou et al. (2004): k-nearest-neighbors does
not take global consistency into account, LabelSpreading (a label propagation
approach) does.

Figure 2.6.: Intuition of how in label propagation algorithms, label information flows
out of the labeled nodes into unlabeled ones.

2.4.2. Label Propagation Intuition

Semi-supervised algorithms differ in how they realize the global assumption condition.
For label propagation algorithms, the intuition is that “labeled data act like sources
that push out labels through unlabeled data” (Zhu and Ghahramani 2002). Figure 2.5
visualizes this intuition. Label information is iteratively flowing out of the labeled nodes
(yellow and blue) into the unlabeled ones. We note two structures: The yellow label
gains control over the left structure, the blue one over the right structure.

Label propagation algorithms do not operate directly on multi-dimensional vectors, but
on graphs. The data first needs to be converted into a graph structure, where the graph
structure correlates with the goal of classification. In case for thesaurus synset extension,
a similarity graph (see Section 2.3) needs to be constructed. Note that there is not “the
one” label propagation algorithm, but instead the term describes a family of algorithms
that all propagate labels along the graph structure.

We describe the two basic label propagation algorithms that have been subject to most
research: LabelPropagation by Zhu et al. (2005), and LabelSpreading by Zhou et al. (2004).
We will then give an overview of where label propagation has been applied in general. To
distinguish between “label propagation”, the family of algorithms that propagate labels,
and the specific algorithm by Zhu et al. (2005), we write the latter as “LabelPropagation”.
For consistency, we refer to the algorithm by Zhou et al. (2004) as “LabelSpreading”.
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2.4.3. Input Data

The input data for LabelPropagation and LabelSpreading is prepared in the same way.
We describe the process along the lines of Bengio et al. (2006). The data is represented
by a graph G = (V, E), where nodes V = {1, . . . , n} represent the training data (labeled
and unlabeled) and edges E represent similarities between them. The similarities are
given by a weight matrix W. Wij is non-zero iff xi and xj are neighbors, i.e. the edge
(i, j) ∈ E (weighted by Wij). The graph is usually assumed to be undirected7 and positive
(Bengio et al. 2006; Buchnik and Cohen 2017). For LabelPropagation, it is not clearly
defined whether self-referencing edges should be allowed. Bengio et al. (2006) claim
preventing them (Wii = 0) often works better. For LabelSpreading, Zhou et al. (2004)
explicitly state that there should be no self-referencing edges.

All nodes’ labels get saved in a label distribution matrix (or class probability matrix) Y with
shape (#nodes, #classes) - each row corresponds to a node, each column to a specific
class. Y(k) corresponds to the label distribution matrix after the k-th iteration (Y(0) for
the initial, Y(∞)

i for the converged distribution). Nodes {1, 2, . . . , l}, where the label
is known, get labeled with a one-hot encoding vector yi, i.e. 0 everywhere except 1
where the index corresponds to the class of of xi. Nodes {l + 1, . . . , n} get labeled with
a zero-value vector. In this explanation, we order labeled nodes before unlabeled nodes -
this is just for better overview; in general, a specific node order is not required. Note
that we assume a multi-class classification scenario, i.e. #classes > 2. If the classification
is binary, Y can have shape (#nodes, 1) and the nodes can simply be labeled with 1 or
−1 for known labels and 0 for unknown label. Per node, the value in each column can
be interpreted as confidence for the respective class.

1

A

2

B

53

4

(a) Graph View. Node 1 is la-
beled with label A, node
2 with B. The other nodes
are unlabeled.

1 2 3 4 5


1 0 0 1 0 0
2 0 0 1 0 1
3 1 1 0 1 0
4 0 0 1 0 0
5 0 1 0 0 0

(b) Weight Matrix W

A B


1 1 0
2 0 1
3 0 0
4 0 0
5 0 0

(c) Initial Label Distribution
Y(0)

Figure 2.7.: An exemplary graph G with five nodes (two labeled, three unlabeled)

Example For an exemplary graph G with weight matrix W and initial label distribution
Y(0), see Figure 2.7. Node 1 is labeled with class A, node 2 with class B, the other nodes

7This means the weight matrix is symmetric.
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are unlabeled. Looking forward, one can intuitively see that node 5 should receive the
same label as 2, whereas the label for 3 and 4 is undetermined, as both labeled nodes
influence them. When presenting the LabelPropagation and LabelSpreading algorithms,
we will come back to this example and show how each of them determines a final label
distribution.

2.4.4. LabelPropagation

Algorithm 1: LabelPropagation (Zhu and Ghahramani 2002)

Compute weight matrix W
Initialize Y(0) ← (yi, . . . , yl , 0, 0, . . . , 0)
Compute the (weighted) diagonal degree matrix D by Dii ← ∑j Wij

Compute transition matrix T ← D−1W
Iterate

1. Y(t+1) ← TY(t)

2. Y(t+1)
l ← Y(0)

l // Reset learned labels of labeled nodes
until convergence to Y(∞)

Label point xi with the class that resembles the index of the highest value in Y(∞)
i

In LabelPropagation (algorithm 1), after calculating the input matrices, the transition
probability matrix T gets computed by multiplying inverse (weighted) diagonal degree
matrix D−1 and weight matrix W.8 This corresponds to letting the labels “flowing in”
via adjacent edges, with the amount being determined by the respective edge weight in
relation to the other adjacent ones. The new class probabilities Y(t+1) are then calculated
by applying the transition matrix T to Y(t).

Then, the learned labels of the already initially labeled nodes get reset. This is also
called clamping. If we would not reset these labels, we would not get a steady stream of
label information. The initial label information would just “fade away”, potentially with
allocating a different label to the initially labeled nodes.

The application of the transition matrix T on the current label distribution matrix Y(t)

and clamping is repeated until convergence. Then, each node gets labeled with the most
likely (highest-valued) class from the node’s row, Y(∞)

i .

Example To come back to our exemplary graph G, Figure 2.8 shows the transition
matrix T, the first two iterations of Y the final label distribution matrix. Node 5 gets
labeled with class B, while for nodes 3 and 4, both possible classes get assigned the
same probability. This corresponds to our intuition from before.

8The inverse of a diagonal matrix can be simply calculated by inverting each matrix value.
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1

A

2

B

53

4

(a) Exemplary Graph G

1 2 3 4 5


1 0 0 1 0 0
2 0 0 1/2 0 1/2

3 1/3 1/3 0 1/3 0
4 0 0 1 0 0
5 0 1 0 0 0

(b) Transition Matrix T

A B


1 1 0
2 0 1
3 1/3 1/3

4 0 0
5 0 1

(c) Y(1), label distributions af-
ter first iteration

A B


1 1 0
2 0 1
3 1/3 1/3

4 1/3 1/3

5 0 1

(d) Y(2), label distributions
after second iteration

A B


1 1 0
2 0 1
3 1/2 1/2

4 1/2 1/2

5 0 1

(e) Y(∞), converged label dis-
tributions

Figure 2.8.: LabelPropagation transition matrix for graph G and iteratively calculated label
distributions for its nodes

Different LabelPropagation Algorithms Between the original paper (Zhu and Ghahra-
mani 2002) and the papers referencing it (Bengio et al. 2006; Buchnik and Cohen 2017),
there is a slight difference in the algorithm described. The probabilistic transition matrix
is calculated differently. Bodó and Csató (2015) investigate this issue in detail. Without
further note, widely-cited papers like Bengio et al. (2006) actually describe the algorithm
from Zhu et al. (2005), Zhu’s doctoral thesis, where the algorithm was given in its
modified version. We show the difference in Appendix B. As most research seems to
use the version by Zhu et al. (2005), we chose to use this version as well.

20



2.4. Label Propagation

2.4.5. LabelSpreading

Algorithm 2: LabelSpreading (Zhou et al. 2004)

Compute weight matrix W
for i 6= j (and Wii ← 0) Initialize Y(0) ← (yi, . . . , yl , 0, 0, . . . , 0)
Compute the (weighted) diagonal degree matrix D by Dii ← ∑j Wij

Compute the matrix S← D−1/2WD−1/2

Choose a parameter α ∈ (0, 1)
Iterate Y(t+1) ← αSY(t) + (1− α)Y(0) until convergence

Label point xi with the class that resembles the index of the highest value in Y(∞)
i

LabelSpreading9, outlined in algorithm 2, is quite similar to LabelPropagation. As in
algorithm 1, each node i receives a contribution from its neighbors j. But there are two
differences:

1. Instead of reseting the pre-labeled nodes to their initial state, they only receive
an amount of information from their initial state. The relative amount of how
much information nodes should receive from neighbors and from the initial label
information, is specified via the hyper-parameter α. This results in a less strong
flow from the initially labeled nodes and can even lead to them being re-labeled in
the end.

2. The transition matrix S is constructed differently. Instead of row-normalizing W
like in Zhu et al. (2005) or column-normalizing W like in Zhu and Ghahramani
(2002), it is symmetrically normalized with D−1/2.10

LabelSpreading was designed to be a smooth function, i.e. the label distribution should
not change too much between nearby points. Even if two nearby points initially received
two different labels, their difference will be relatively smoothed out during the iterations,
depending on the parameter α. The higher α is, the less impact the initial labels will
have and the more smoothing will happen.

Example Figure 2.9 shows the LabelSpreading transition matrix for graph G from
Figure 2.7 and converged label distributions for selected α values. We can see that
α has great influence on the resulting label distributions. An individual value Sij in
the transition matrix is calculated by multiplying 1/√degree of nodes i and j. From the
transition matrix, we can see that node 1 (with label A) has greater direct influence
on node 3 than node 2 (with label B). Therefore, for small α, node 3 receives a higher
confidence score in label B. Subsequently, its neighboring node 4 which has no other

9The name was not used in the initial paper, but was mentioned in Bengio et al. 2006 with the reason
that the algorithm is inspired by “spreading activation networks”.

10Like D−1, this can be calculated in a computationally easy way by D−1/2
ii ← (Dii)

−1/2 (all other entries
stay 0).
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1

A

2

B

53

4

(a) Exemplary Graph G

1 2 3 4 5


1 0 0 1/
√

3 0 0
2 0 0 1/

√
2 · 1/

√
3 0 1/

√
2

3 1/
√

3 1/
√

2 · 1/
√

3 0 1/
√

3 0
4 0 0 1/

√
3 0 0

5 0 1/
√

2 0 0 0

(b) Transition Matrix S (1/
√

3 ≈ 0.58, 1/
√

2 ≈ 0.71,
1/
√

2 · 1/
√

3 ≈ 0.41)

A B


1 0.99 0.01
2 0.01 0.99
3 0.58 0.42
4 0.58 0.42
5 0.01 0.99

(c) Y(∞) for α = 0.2

A B


1 0.96 0.04
2 0.04 0.96
3 0.57 0.43
4 0.57 0.43
5 0.04 0.96

(d) Y(∞) for α = 0.4

A B


1 0.89 0.11
2 0.10 0.90
3 0.54 0.46
4 0.54 0.46
5 0.10 0.90

(e) Y(∞) for α = 0.6

A B


1 0.74 0.26
2 0.21 0.79
3 0.49 0.51
4 0.49 0.51
5 0.21 0.79

(f) Y(∞) for α = 0.8

A B


1 0.43 0.57
2 0.41 0.59
3 0.43 0.57
4 0.42 0.58
5 0.38 0.62

(g) Y(∞) for α = 0.99

Figure 2.9.: LabelSpreading transition matrix for graph G and selected converged label
distributions, depending on α. All values are rounded to two decimal
places. All Y(∞) are row-normalized to maintain the interpretation as class
probability. We can see that, the higher the hyper-parameter α, the smoother
the overall label distribution across the nodes.

neighbors, receive a higher confidence score in label A as well. But, for higher α, the
overall influence of label A decreases. The sole source for this label, node 1, has only a
1/
√

3 = 0.58 output, whereas the source for label B, node 2, has a combined output of
1/
√

2 · 1/
√

3 + 1/
√

2 = 1.12. Because the initial label information are not “refilled” as much
as before, label B gains high influence across all nodes, even on node 1.
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Transition Matrix S as a Laplacian Matrix In papers like Bengio et al. (2006) and
Buchnik and Cohen (2017), the transition matrix S ← D−1/2WD−1/2 is described as
“normalized graph Laplacian L”. This is not the case - according to von Luxburg
(2007), the symmetrically normalized graph Laplacian is given by L← I − D−1/2WD−1/2.
Rather, and also the way Zhou et al. (2004) called it in their original paper, we have a
“symmetrically normalized weight matrix”.

2.4.6. Applications

According to Ravi and Diao (2015), label propagation algorithms have been successfully
applied to a variety of semi-supervised learning tasks - e.g. computer vision, information
retrieval and social networks, as well as natural language processing. Here, we will
sketch a few of these applications. Often, modified versions of the basic algorithms
described in section 2.4 are used, e.g. to scale them to even larger datasets. The basic
idea to propagate labels across a graph structure is the common characteristic.

Classical Semi-Supervised Tasks Both papers on the basic label propagation algo-
rithms that we presented in Section 2.4 apply it to a classical semi-supervised problem:
Handwritten digit recognition. A demonstration for their performance including code
can be found in the scikit-learn library.11 (Pedregosa et al. 2011) Zhou et al. (2004) addi-
tionally demonstrated their LabelSpreading algorithm on a text classification dataset,
where words were successfully classified into one of the categories autos, motorcycles,
baseball, hockey.

Sentiment Lexicon Generation An interesting application of label propagation is the
automatic generation of a sentiment lexicon (Tai and Kao 2013). It is especially interesting
because they directly used the LabelSpreading approach by Zhou et al. (2004).

Large-scale deployments at Google & Facebook Both, Google and Facebook apply
label propagation algorithms in various ways with focus on scalability and performance.
In his blog post12, Ravi from Google describes the use of graph-based machine learning
at Google and highlights their Expander framework (Ravi and Diao 2015) that is used for
solving large-scale problems. These problems require billions of nodes, trillions of edges
involving billions of different label types. Examples are the smart response generation
in Inbox by Gmail (Kannan et al. 2016), automatic categorization of machine generated
email (Wendt et al. 2016), translation and visual object recognition. Furthermore, Baluja

11http://scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_digits.html,
visited on Nov. 3, 2018

12http://ai.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html, visited on Nov.
3, 2018
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et al. (2008) evaluate label propagation for personalized video suggestions on YouTube.
Facebook’s Ugander and Backstrom (2013) describe how their algorithm balanced label
propagation is used to partition the “People You May Know” as it is too big to fit into a
single machine.13 This partitioning is important as the friend suggestions for one user
should lie mostly on the same machine, because queries across multiple machines have
poor performance.

13This technique is called sharding.
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In Section 1.2, we presented an intuitive understanding of combining word embeddings
and label propagation to extend a thesaurus. By applying the Pipes and Filter architec-
tural pattern (Buschmann et al. 1996), we modeled this thesaurus extension process as
a pipeline and implemented it in Python. The pipeline covers the process from end to
end: As input, it starts with the text corpus and the existing thesaurus. As output, it
returns a list of predictions in the format of “(word, synset id, confidence)” tuples. It also
includes the capability to split the thesaurus in training and test data and automatically
calculate performance metrics. The pipeline is published on GitHub.1

We first focus on the architectural decisions and the general architecture. Then, we
describe each pipeline step and outline the different options we considered and imple-
mented.

3.1. Pipeline Architecture

Pipes and Filters Pattern The Pipes and Filters architectural pattern breaks the task
of a system down into several sequential processing steps (Buschmann et al. 1996).
The steps are connected by the data flow through the system - the output data of a
step is the input to the subsequent step. Each processing step is implemented by a
Filter component. The input to the system is provided by Data Sources. The output
flows into a Data Sink, such as a file. The data source, the filters and the data sink are
connected sequentially by Pipes. The sequence of filters combined by pipes is called a
Processing Pipeline. The pipes and filters pattern fits the thesaurus extension process well
as it is data-centric. We have data sources - the text corpus and the existing thesaurus.
Their data gets passed through multiple different transformation steps until the results
(prediction tuples and performance metrics) get stored in a data sink (text file). Each
of the transformation steps is clearly defined and communicates with the others solely
trough input and output data.

Architecture Overview The pipeline architecture is shown in Figure 3.1. The first step
is the pre-processing of the text corpus - the large set of text files with meta-information
in each file is transformed to a single file that includes every word, separated by spaces,

1https://github.com/sebischair/ThesaurusLabelPropagation
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3. Implementation

Figure 3.1.: Pipeline architecture that splits the problem into several, successive steps
and allows for adjustments in single steps without affecting others.

without punctuation. Then, each word is mapped to a word embedding vector. In the
third phase, we use the word embeddings to construct a graph. Words become graph
nodes and similar words are connected by edges. As fourth phase, the thesaurus gets
pre-processed - from a list of already existing synsets we generate a list of “(word, synset
id)” tuples. Words which are not present in the pre-processed corpus are filtered out
from the thesaurus. Phase five splits each thesaurus pair into a training and a test set
part, phase six labels the similarity graph with the training labels. Phase seven is the
propagation phase in which labels get iteratively propagated throughout the graph.
It returns a label prediction for each word that got covered by the propagation. The
eighth phase calculates relevant performance metrics of the resulting predictions, as e.g.
prediction accuracy. It returns the metrics together with the prediction tuples.

For most of the filters, specific hyper-parameters need to be set, e.g. the number of
word vector dimensions or the label propagation variant. In general, a hyper-parameter
is a parameter whose value is set before the learning process begins. The choice of
hyper-parameters for a phase influences its output and therefore has impact on the
performance of the final model. Parameter studies to choose proper hyper-parameter
values are needed. This is subject to the Quantitative Evaluation in Chapter 4.

Architectural Goals During the implementation of the pipeline, we had several goals
we wanted to achieve:
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1. Hyper-parameters for all filters should be easily accessible and modifiable for each
run to make parameter studies easier.

2. A run should be able to use intermediate results from previous runs, so that a
re-calculation is not needed.

3. Runs should be reproducible.

We achieved (1) by grouping all hyper-parameter into a configuration file that gets
required by the filters. All hyper-parameter values receive a default value, but this
default value can be overwritten manually when starting a pipeline run. For (2),
we implemented a simple caching mechanism. We not only persist the result of the
evaluation phase, but also all intermediate results. At the start of each phase, it is checked
whether there already exists output data for the same input and same hyper-parameter
configuration. Resource-consuming phases like the calculation of word embeddings or
the graph construction, that usually take hours, can therefore often be skipped. (3) is
achieved in two respects: For each run, we store the hyper-parameter configuration that
led to the run’s result. Also, we expose the random number seed as a hyper-parameter.
This makes it possible to accomplish deterministic behavior for all our phases, except for
the word embeddings phase, where it is almost impossible to achieve fully deterministic
results because of multi-threading.2

3.2. Pipeline Filters

3.2.1. Corpus Pre-Processing

Input and Output In the corpus pre-processing filter, we transform the texts from the
text corpus into a space-separated list of words and join the contents into a single file.

The word embedding algorithms in the next filter will treat every character sequence
that is separated by one or multiple spaces as a word and generate an embedding vector
for it. For example, a sequence This is Tom’s cat. will lead to Tom’s and cat. being
treated as words, and subsequently receive word embeddings different to Tom, tom, cat
or CAT. This is why punctuation and capitalization need to be removed.

Then, it can make sense to handle different spellings of the same word that still should
lead to the same vector. Moreover, removing special characters like numbers can be
useful because e.g. references to specific paragraphs lead to different paragraphs,
depending on the referring document, and thus have different semantic meaning.

We apply to all text files as a default the pre-processing actions from Landthaler et
al. (2017). Figure 3.2 shows an excerpt of a sample document before and after this
pre-processing. The steps are as follows:

2https://github.com/RaRe-Technologies/gensim/issues/744, visited on Nov. 3, 2018
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[...] wenn sie im
Bundesgebiet Vermögen
besitzt, als unbeschränkt
steuerpflichtige
Kapitalgesellschaft zu
behandeln. KStG 1951 §1
Abs. 1 Ziff. 1, §2 Abs. 2
[...]

(a) Before

[...] wenn sie im
bundesgebiet vermögen
besitzt als unbeschränkt
steuerpflichtige
kapitalgesellschaft zu
behandeln kstg
PARAGRAPHSIGN abs ziff
PARAGRAPHSIGN abs [...]"

(b) After

Figure 3.2.: Demonstration of pre-processing on a simplified text from the corpus

1. Discard all meta-data like author and document type
2. Remove newline and carriage return characters \n and \r
3. Replace muß with muss, the first one corresponds to the old German spelling rules
4. Replace the paragraph sign § with the word PARAGRAPHSIGN, followed by a

space, so that e.g. “§4d” becomes two words: PARAGRAPHSIGN and 4d
5. Replace every non-alphabetic character (excl. German umlauts and ß) with a space
6. Discard words with less than two characters
7. Transform every word to lowercase
8. Save all words, separated by spaces, into a new “cleaned” file

Finally, all individual “cleaned” documents get merged into a single line within a single
file. After this pre-processing, we end up with a vocabulary size of 540, 025 and a total
of 145, 091, 338 words.

Variations We implemented variations to parts of these pre-processing steps and
exposed them as hyper-parameters choices:

1. ß-handling. Instead of just replacing the ß in muß, we replaced every “ß” with “ss”.
Word sense does not change and it prevents other occurrences where two ways
of writing (one with ß, one with ss) are possible. We also implemented a variant
where ß is never replaced.

2. Keep characters. The corpus contains some words from other languages, e.g.
French, English and Russian. Instead of just keeping German letters, we kept all al-
phabetic characters. With that, we prevent that words like société get split into “soci
t” (or rather soci, as we discard words with less than two characters). Furthermore,
we noticed that many words contain a hyphen, e.g. “portfolio-kapitalanleger”. By
default, the hyphen is replaced with a space and the word is split into two words.
By keeping hyphens that are located between two characters, we keep the word as
one.3

3A different approach, but out of scope for this work, would be the detection of phrases, words that
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3. Text Saving. Instead of merging all documents into a single large line, we put
each document into its own line in the output file. This has consequences for the
word embedding filter: A newline character resets the history during the training,
which means that words in different lines will not be counted as context for each
other. If all texts get stitched together as one line, words from the end of an article
A will be seen as context for words in the beginning of article B and vice-versa,
but are in fact unrelated contexts.

Table 3.1 shows the resulting hyper-parameters with their respective options, Table 3.2
shows the effects of the ß-handling and the “Keep characters” options on the vocabulary
size and total word count. We note that especially keeping hyphens has a great effect on
the vocabulary size - it increases over 10%.

Parameters Options
ß-handling muß→ muss all ß→ ss no ß→ ss
Keep characters German letters Letters Letters + Hyphens
Text Saving One line for all texts One line per text

Table 3.1.: Corpus Pre-Processing: Hyper-Parameters and possible values

3.2.2. Embeddings Generation

Input and Output This filter generates a list of multi-dimensional word embeddings
from a space-separated list of words.

We set up the three different word embedding technologies that we have explained
in Section 2.2.1: word2vec, fastText and GloVe. For all of them, there exist libraries
that we could make use of. For word2vec and fastText, the popular gensim library4

by Řehůřek and Sojka (2010) offers a Python interface that we could directly use. For

Voc. Size
muß→ muss 540, 025

all ß→ ss 536, 978
no ß→ ss 540, 026

(a) Effect of ß-handling option on vo-
cabulary size (while keeping only
German letters)

Voc. Size Total Words
German Letters 540, 025 145, 091, 338

Letters 540, 420 145, 090, 279
Letters + Hyphens 609, 283 144, 309, 754

(b) Effect of “Keep characters” option on vocabu-
lary size and total word count (while setting
muß→ muss)

Table 3.2.: Effects of ß-handling and “Keep characters” options

very often go together, and generating specific vectors for them. This has the advantage that phrases that
get written sometimes written with a hyphen in between, and sometimes not, lead to the same vector.

4https://github.com/RaRe-Technologies/gensim, visited on Nov. 3, 2018
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Parameters Options
Technology word2vec fastText GloVe
Vector Size n ∈N

Iteration Number n ∈N

Table 3.3.: Embeddings Generation: Hyper-Parameters and possible values

GloVe, no popular Python implementation exists5, so we had to use the C reference
implementation by Pennington et al. (2014) available on GitHub6 and call the binary
files manually from Python.

Hyper-Parameters All of the approaches offer multiple hyper-parameters that can be
set and that influence the overall performance. As there are whole papers dedicated
to parameter studies, we decided to narrow down the parameters we wanted to study.
Another reason is that, while word2vec and fastText have almost the same set of hyper-
parameters, as this is basically the same approach with the difference in subword
(n-grams) handling, GloVe does not offer the same set of hyper-parameters and it would
have been necessary to study them separately. For most of the parameters, we therefore
settled with the default values. Most importantly, for all approaches, we set the context
window size and the minimum count per word7 to 5. For both word2vec and fastText,
we use the CBOW algorithm. Besides the technologies themselves, we will investigate
these hyper-parameters during evaluation: vector size (dimensionality of the vectors)
and number of iterations. The hyper-parameters are shown in Table 3.3. After successful
embedding generation, we get a list of around 180,000 unique words with their word
vectors. The exact number depends on the corpus pre-processing method: 178, 446 when
just keeping German letters, 188, 031 when keeping all letters and hyphens.8

As word similarity is calculated from the cosine similarity between two word vectors, the
vectors’ magnitude does not have an effect on the similarity. Nevertheless, the vector
have different magnitudes, mostly depending on the frequency a word occurred in the
corpus (high occurrence generally leads to higher magnitude). For performance reasons,
our approach of calculating similarity does not depend on the angle or the cosine
distance, but on the euclidean distance (more on that in the next section). With euclidean
distance, the magnitude unwantedly has an effect on the distance. We circumvent that
by norming all vector to the unit length of 1 before saving.

5The most popular one, glove-python, with around 800 stars on GitHub (visited on Sep. 19, 2018),
describes itself as a “toy implementation” and was lastly updated in May 2016. Therefore, it was not
selected.

6https://github.com/stanfordnlp/GloVe, visited on Nov. 3, 2018. We used the version with latest
commit 07d59d5 from Jun. 24, 2018.

7If a word occurs less times than the minimum count, it will be removed.
8For both cases, the ß-handling is “muß→ muss”.
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Parameters Options
Graph Type k-nearest-neighbors ε-neighborhood
Neighbors (for knn-graph) k ∈N

ε (radius for ε-graph) ε ∈ (0, 2)
Edge Weights unweighted weighted
Edge Type (for knn-graph) directed undirected
Self-References Yes/No

Table 3.4.: Graph Construction: Hyper-Parameters and possible values

3.2.3. Graph Construction

Input and Output This filter generates a similarity graph out of a list of word embed-
dings and stores its adjacency matrix. Each embedding acts as a graph node.

We examined the two neighbor graph approaches that we explained in Section 2.3:
The k-nearest-neighbor (knn) graph and the ε-neighborhood graph. For implementation,
we used the scientific library “scikit-learn”9 by Pedregosa et al. (2011), that offers
implementations for both approaches.

Graph-Method specific Hyper-Parameters For the knn variant, we need to set the k
hyper-parameter. It specifies to how many of its nearest neighbors a node needs to be
connected via an edge. Additionally, we need to set whether the edges are undirected,
i.e. the graph adjacency matrix should be made symmetric. Note that a knn graph is
directed by default, as a node x can have a node y as one of its k nearest neighbors,
while the reverse does not hold (there could be a node z that is closer to y than x). An
ε-graph is undirected by definition. For the ε variant, we need to set ε hyper-parameter.
Each node gets connected to all other nodes within this neighborhood distance.

Common Hyper-Parameters Two other hyper-parameters are relevant for both vari-
ants. First, we are interested in the edge weights - how much of a difference does it
make whether the edges are unweighted (edges have uniform weight 1) or weighted
(the higher the similarity, the higher the edge weight)? Second, we need to set whether
self-referencing edges are allowed or not. All hyper-parameters are shown in Table 3.4.

Distance Metric As mentioned in Section 3.2.2, we used the euclidean distance for
calculating vector neighborhood instead of the usual cosine distance. This is because
scikit-learn is not optimized for calculating pairwise cosine distances for such a large
number of vectors. Graph-calculation using cosine distances resulted in memory errors,

9https://github.com/scikit-learn/scikit-learn, visited on Nov. 3, 2018
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{
"Concept": 334,
"Keys": [
"Abwrackprämie",
"Umweltprämie"

],
"Class": "synonym"

}

(a) Before

abwrackprämie 334
umweltprämie 334

(b) After

Figure 3.3.: Pre-Processing Demonstration on single thesaurus synset

while calculating their euclidean distances was not an issue. In appendix A, we show
that the cosine distance is directly related to the euclidean distance on normalized
vectors. The euclidean distance on normalized vectors provides the same neighborhood
ordering and can be used to calculate the cosine distance with this formula:

cosdist(A, B) =
eucdist(A, B)2

2

For weighted graphs, we receive the edges with euclidean distance weights from scikit-
learn, and then convert it to cosine similarity, which is 1− cosdist, where cosdist can be
calculated with the mentioned formula. Note: If we had set that no self-loops should
be allowed, we afterwards need to set the diagonal of the adjacency matrix to 0, as
otherwise each node will have a maximum-similarity edge with itself. One additionally
has to pay attention to the fact that the ε hyper-parameter values, as they get used by
the scikit-learn graph construction algorithm, will specify the euclidean distance, no the
cosine distance.

3.2.4. Thesaurus Pre-Processing

Input and Output From a thesaurus file with multiple concepts in different word
relations and a list of word embeddings, this filter generates a list of “(word, synset id)”
tuples.

Process First, we discard the concepts that do not describe synonym relations. We
define the further thesaurus pre-processing steps as:

1. Transform every word to lowercase.
2. Remove all keys that contain a space. Keys in a synset are sometimes not individual

words, but phrases like “tax heaven”. By default, word embedding approaches
generate word vectors on a word-level, not on a phrase level.
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Parameters Options
Remove words with Hyphens Yes/No
ß-handling all ß→ ss no ß→ ss

Table 3.5.: Thesaurus Pre-Processing: Hyper-Parameters and possible values

3. Like in the corpus pre-processing in Section 3.2.1, we make each of the two
following steps optional via hyper-parameters (also shown in Table 3.5).

a) Remove all keys that contain a hyphen.
b) Replace all ß by ss.

4. Create an (n : 1) mapping from words to synset ids. Note that some words occur in
multiple synonym groups - as we restricted ourselves to single-label classification,
we had to decide on which synset the word should be mapped to. We solved this
decision problem by mapping a word to the group with the most keys.

5. Some words in the thesaurus may not have a corresponding corpus word vector.
They will not have a corresponding node in the graph and can not be considered
in the label propagation. Therefore, we removed them from the list.

6. In the end, we remove synsets that contain less than two words, as we cannot split
them in training and test data later.

Table 3.6 shows how many words and synsets are left in the thesaurus after each step.
The number of synsets and words gets reduced significantly compared to their initial
number, especially when removing words with hyphens, too. Figure 3.4 shows the
distribution of synsets sizes after pre-processing. When we compare this to Figure 2.2 in
Section 2.1.2, we can see that especially the share of synsets with size 3 and 4 is smaller
than before.

description synsets keys
initially and after 1 12, 288 36, 076

after 2 12, 168 30, 014
after 3 11, 543 20, 709
after 4 11, 376 (12, 049) 20, 366 (29, 562)
after 5 5, 808 (6, 215) 8, 238 (9, 827)
after 6 1, 743 (2, 552) 4, 173 (6, 164)

Table 3.6.: Filtering out synsets and keys from thesaurus dataset in each preprocessing
stage. Empty synsets are removed after each step. The number in parenthesis
corresponds to the value if phase 3 (removal of keys with hyphens) is omitted.

Discussion on (n : 1) mapping One could argue that removing words that do not
appear in the corpus should have happened before creating the n : 1 mapping. It could
happen that, when a word has multiple labels, it gets labeled with a set that disappears
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(a) Incl. removal of words with hyphens (b) Without removal of words with hyphens

Figure 3.4.: Histogram on the distribution of synset sizes after fully pre-processing the
thesaurus

due to removal of non-corpus words. If the non-corpus word removal would happen
earlier, the word would be guaranteed to be added to a set that will not get discarded.
As just 1.5% of thesaurus words have multiple labels, and they are getting mapped to
the synset with the largest word count (a removal of such a synset because of too many
non-corpus words is unlikely), we consider it neglectable.

3.2.5. Thesaurus Sampling

Input and Output This filter splits a list of “(word, synset id)” tuples into two lists,
training set and test set.

Variants We implement two variants as shown in Table 3.7. Either, each synset gets
split into a 50% training set and 50% test set part. In case of uneven synset sizes, the
training set size gets rounded to the nearest even value, the test set size to the nearest
uneven value. The elements in the training set are later used as initially labeled nodes,
the test set is used for automatically evaluating the prediction performance. Or, the
whole list gets passed to the training set. This way, as much training information as
possible is available, but evaluation has to be be conducted manually.

Parameters Options
Training/Test Split 50%/50% 100%/0%

Table 3.7.: Thesaurus Sampling: Hyper-Parameters and possible values

To avoid that our model overfits to a specific training-test-set split, we generate multiple
split variants and evaluate our models for each of these splits. We generate these split
variants by explicitly setting the random number generator seed to a different value for
each variant.

34



3.2. Pipeline Filters

Different splits other than splitting each synset in half are not really possible. As seen in
Figure 3.4, the vast majority of synsets just has two keys. On the one hand, we need at
least one key per synset in the training set, or the respective synset will not get predicted.
On the other hand, we need at least one test key per synset as otherwise we could not
evaluate if this synset gets correctly predicted.

3.2.6. Graph Labeling

Input and Output From the training set of “(word, synset id)” tuples and the graph
adjacency matrix, this filter labels the respective graph nodes with their synset ids. All
words that do not have such an initial training label get marked with −1.

3.2.7. Label Propagation

Input and Output From a sparsely-labeled graph, this filter determines labels for the
unlabeled nodes. It returns a list of “(word, predicted synset id, confidence, [top3 synset ids])”
tuples. The words that were already labeled are included in this list.

We implemented the two basic algorithms described in Section 2.4: LabelPropagation and
LabelSpreading. The implementation took place using the Python frameworks “numpy”10,
“scipy”11 and “scikit-learn”, that enable fast operations on large matrices, especially
through the sparse matrix object types of scipy.

Considerations scikit-learn12 includes implementations for LabelPropagation and La-
belSpreading. We switched to our own implementation due to these reasons:

• Their implementation considered the Graph Construction (see Section 3.2.3) part
of label propagation. This means that the graph has to be re-generated each time
the method is executed, even when the underlying graph is the same and just a
hyper-parameter of the actual propagation part is changed. By implementing it
ourselves, we could introduce caching behavior.

• We recognized that the LabelSpreading implementation was not fully in line with
the reference paper by Zhou et al. (2004). First, nodes in their knn-graph contained
self-loops, which was undesired originally. Second, their calculation of the transi-
tion matrix (“Laplacian Matrix”) expected the graph to be symmetric, which is not
the case for the default knn-graph that is not explicitly made undirected.13

10https://www.numpy.org, visited on Nov. 3, 2018
11https://www.scipy.org, visited on Nov. 3, 2018
12http://scikit-learn.org/stable/modules/label_propagation.html, visited on Nov. 3, 2018
13We notified the project’s maintainers of these inconsistencies here: https://github.com/scikit-

learn/scikit-learn/issues/11784, visited on Nov. 3, 2018
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Parameters Options
Type LabelPropagation LabelSpreading
Iteration Number n ∈N

α (for LabelSpreading) (0, 1)

Table 3.8.: Label Propagation: Hyper-Parameters and possible values

Hyper-Parameters The hyper-parameters for this filter are shown in Table 3.8. We
treat the number of propagating iterations as a hyper-parameter, similarly to Buchnik
and Cohen (2017). Usually, as both algorithms converge (Bengio et al. 2006), iteration
is done until convergence. Here, we directly cut off after a number of iterations.
LabelPropagation does not have another hyper-parameter, while LabelSpreading needs
the smoothing value α ∈ (0, 1).

After the iterations took place, we row-normalize the label distribution matrix Y. We
treat the matrix as a confidence matrix. We can then note the confidence between 0 and
1 (0− 100%) for each “(word, synset id)” pair. It states the algorithm’s confidence for
applying the “synset id” label to the respective word. For each word, the filter returns
the label that received the highest confidence. More information like the label’s exact
confidence value and the labels with second and third highest confidence are returned
as well for evaluation purposes.

3.2.8. Evaluation Filter

Input and Output From a list of “(word, predicted synset id, confidence, [top3 synset
ids])” and the training and test set lists (format: “(word, synset id, confidence)”), this
filter computes various quantitative evaluation metrics and stores the input lists as a
combined list.

On the one hand, we compare the predictions with the “true” labels in the test set. On
the other hand, we calculate metrics on the predictions themselves, such as synset size
distribution or mean confidence. The exact evaluation metrics are subject to Chapter 4,
Quantitative Evaluation. These quantitative results get saved in a statistics file. The three
input lists (predictions, training & test set) get saved, too, as a combined file for further
manual evaluation.
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In Chapter 3, Implementation, we identified several hyper-parameters along the pipeline’s
phases which can be varied in many different ways. In so-called parameter studies, we
try to understand the impact of certain hyper-parameters on the overall performance.
We do so by compare the performance of various configurations (a specific choice of
hyper-parameter values). We calculate the accuracy of the synset predictions on the test
set. As the accuracy can be calculated automatically, we can try out many configurations
in order to find the best possible set of hyper-parameter values. In the end of this process
which we call “Quantitative Evaluation”, we combine the best hyper-parameter values
and derive two optimized configurations. In Chapter 4, Qualitative Evaluation, we use
these optimized configurations to verify if good quantitative performance corresponds
to good human rating.

4.1. Structure

The quantitative evaluation flow is visualized in Figure 4.1. To automatically assess a
run’s performance, we split the existing handcrafted thesaurus into a training and a
test set. The training set data is used as initial labels for the similarity graph. Via label
propagation, these labels get propagated along the graph so that previously unlabeled
nodes receive a label. The test set then is used to calculate the prediction accuracy.
Having just one partition into training and test set makes the evaluation vulnerable
to over-fitting. We overcome that by controlling the random seed that determines
the partition selections. We create three different partitions and evaluate each run’s
configuration on all three.

Figure 4.1.: The Quantitative Evaluation as a Training and a Test phase.
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Accuracy The central metric for our quantitative evaluation is the accuracy, the rate of
test samples whose class gets correctly predicted:

∑i [ypredi = ytesti ]

|ytest|

In a single-class scenario, accuracy alone would not be enough to get a good estimate
on the quality of our prediction. The model could just always predict the more frequent
outcome and get an accuracy over 50%. One would have to calculate precision and recall
to judge the results. But as we are in a multi-class scenario with many classes, where no
class is significantly larger than the others, just predicting the most frequent class will
still lead to low accuracy on itself.

4.2. Parameter Studies

In the following sections, we show the results of parameter studies around the several
phases of our pipeline. We arrange our parameter studies into four groups. We start
with the embeddings generation, as the choice of embeddings had the largest impact on
performance. We then investigate the graph construction and label propagation phases.
In the end, we evaluate choices for text corpus and thesaurus pre-processing.

Pipeline Phase Modifiable Parameter Base Configuration Value

Embedding Generation Technology fastText, word2vec
Dimensions 100
Iterations 5

Graph Construction Type k-nearest-neighbors
Neighbors 3
ε (radius for ε-graph) (no default)
Edge Weights Unweighted
Edge Type (for knn-grah) Undirected
Self-references No

Label Propagation Type LabelPropagation
Iteration number 3
α (for LabelSpreading) 0.2

Pre-Processing ß-handling muß→ muss
Keep characters German letters
Text Saving One line for all texts

Table 4.1.: Modifiable parameters per pipeline phase and their default values. These
parameters are subject to our parameter studies.
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Figure 4.2.: Accuracy of word2vec, fastText and GloVe technologies compared

Via manual experimentation, we have deduced a parameter configuration which we
use as default as it is sensible to changes of individual parameters. We fix this base
configuration and vary an individual parameter to see how the parameter impacts the
overall performance. The modifiable parameters and the base configuration are given in
Table 4.1. Note that we perform all parameter studies on fastText and word2vec embed-
dings because we will deduce parameter configurations for each of these embedding
technologies.

4.2.1. Embeddings Generation

Technology Figure 4.2 shows the accuracies of the three embedding technologies
word2vec, fastText and GloVe with our default parameters. fastText embeddings perform
best by far with over 44% accuracy. word2vec’s accuracy is almost half of that with
only 23%. With just 7% accuracy, we note that the default GloVe word embeddings
perform significantly worse than fastText and word2vec ones. We observed the same
behavior when varying the other parameters from Table 4.1. Therefore, we excluded
GloVe embeddings from further evaluation.

Dimensionality and Iteration Number The accuracy generally slightly improves with
higher embedding dimensionality, as can be seen in Figure 4.3 (a). Interestingly, we
can see a maximum at 400 dimensions for fastText, while for word2vec, the accuracy
slightly decreases compared to 300 dimensions. In Figure 4.3 (b), we see that with higher
iteration number, the accuracy improves as well. This is especially true for word2vec
where we can see an increase of almost 10 percentage points from 5 to 60 iterations.
With fastText, the increase is less than 4 percentage points. A higher iteration number
seems to be more important than higher dimensionality. For both parameters, we can
see that the accuracy gain is neglectable as long as the values are chosen sufficiently
high.
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(a) Varying dimensionality (b) Varying iteration number

Figure 4.3.: Accuracy with varying dimensionality and iteration number compared.

(a) knn-Graph for fastText and word2vec, (b) ε-graph for fastText

Figure 4.4.: Accuracy for knn-Graph and ε-graph compared

4.2.2. Graph Construction

Graph Type Figure 4.4 (a) shows the accuracy for a k-nearest-neighbors graph with
varying k. Until around k = 7, increasing k results in higher accuracy. Interestingly, the
increase for fastText is much higher than for word2vec. By increasing k, an accuracy
of 50% can be reached, a value that could not be reached through increasing the
embeddings dimensionality or iteration number. For word2vec, high k achieve the
same accuracy levels as high embeddings dimensionality, but not the same as simply
increasing the iteration number. Figure 4.4 (b) shows the accuracy for an ε-neighborhood
graph with varying ε. In general, we can see that the accuracy is far less than when
using a k-nearest-neighbors graph. Larger ε values do result in higher accuracy, but
also in an increase in graph construction time. The construction time for an ε-graph
was multiple times higher than for a k-nearest-neighbor graph, even when the resulting
accuracy was much less. Therefore, we did not further investigate ε-graphs.
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(a) fastText (b) word2vec

Figure 4.5.: Accuracy for Self-References and Edge Type Parameters Compared

Edge Weights Regarding the edge weights, we notice a slight accuracy advantage for
weighted edges compared to unweighted edges. That is unexpected, we expected a
higher advantage. Edge weights contain information about the similarity of two nodes:
The higher the weight, the more similar. An edge in an unweighted graph, however,
just signalizes that nodes are within each other’s neighborhood. From Section 2.4,
we know that label propagation algorithms propagate more label information along
high-weighted edges. Still, this plus of label information did not lead to significantly
better predictions.

Edge Type and Self-References Figure 4.5 shows the performance behavior for setting
edges directed/undirected and for explicitly allowing/disallowing node self-references.
For both fastText and word2vec embeddings, undirected edges result in better result
than directed ones. This is interesting: On a weight matrix level, undirected edges
correspond to directed edges, with the addition that for each edge, an inversely-directed
edge is added if not already existent. One could argue that this inverse edge does not
add any value or even degrades performance, as it leads to a node that is not in the
direct neighborhood of a node. Our results seem to indicate that the inverse edges do
add value. Disallowing self-references results in better performance as well, but does
not seem to have as much of an effect. A combination of these two options results in the
best performance. Hence, we kept it as a default setting for all future analysis.

4.2.3. Propagation Phase

In Figure 4.6, we compare LabelPropagation and LabelSpreading for varying iteration
numbers. For LabelSpreading, we used α = 0.2 as default value, as it is done by scikit-
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(a) fastText (b) word2vec

Figure 4.6.: Accuracy with varying label propagation technology & iteration number for
two different graph configurations

learn.1 For a k-nearest-neighbor graph with k = 3, we could not determine a difference
in accuracy between the two approaches. Therefore, we have generated the results for
a graph with k = 10 as well. LabelSpreading behaves similar to k = 3, although its
performance does not change anymore after an initial increase in the first 2− 3 iterations.
LabelPropagation behaves completely different than for the previous k = 3 graph. It
reaches the highest performance overall, including all LabelSpreading runs, after 2 itera-
tions. From there, its performance is decreasing until it remains constant after around
12 iterations. In the end, its accuracy is lower than LabelSpreading’s. This applies
to fastText embeddings. For word2vec embeddings, after the initial LabelPropagation
spike, all variants converge to around the same accuracy. We chose to ignore LabelProp-
agation’s high performance for low iterations numbers and settle for a higher iteration
number where the performance value remains constant. For low iteration numbers, the
result is probably very dependent on the initial node neighborhood and could vary a
lot when modifying the input from other phases. Also, we chose LabelSpreading as
“optimized” configuration method as its accuracy for high iterations is higher than for
LabelPropagation.

The α parameter in LabelSpreading Figure 4.7 shows LabelSpreading resulting ac-
curacies for different α values. Although LabelSpreading is not defined for α ∈ {0, 1},
we chose to calculate performance for these two values as well as its behavior can be
intuitively explained. For α = 0, in each iteration, no label information from neighboring
nodes is applied to the resulting label distribution matrix. Therefore, no nodes get
labeled, accuracy is 0%. For α = 1, the initial labels do not get re-applied to the graph,
there is no constant flow from initially labeled nodes anymore. Interestingly, accuracy
does not decrease that much at the same time. Overall, we see that the choice of α does

1http://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.htmlvisited
on Nov. 3, 2018
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4.2. Parameter Studies

Figure 4.7.: Accuracy for LabelSpreading with varying α

not seem to have a large effect on the accuracy as long as the value is not 0. Therefore,
we chose to stay with α = 0.2.

4.2.4. Pre-Processing

Regarding pre-processing, the choice of of ß-handling and the type of text saving did
not have a significant impact on accuracy and is therefore not further explained here.
Howevery, the variant of “Character Keeping” has a clear effect - in Figure 4.8, we
can see that keeping hyphens has a positive effect on accuracy. This is not surprising,
as inclusion of words with hyphens resulted in considerably more synsets and keys
left after thesaurus pre-processing and therefore more training data (see Chapter 3,
Implementation for exact numbers).

(a) Character Keeping, fastText (b) Character Keeping word2vec

Figure 4.8.: Accuracy with varying pre-processing settings
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4.3. Optimized Configurations

From the results of our parameter studies, we inferred an optimized configuration and
applied it to fastText and word2vec as embeddings technology:

• Embeddings Generation. We saw that a high dimensionality and a high iteration
number result in higher accuracy. Therefore, we use an embedding dimensionality
of 400 and an iteration number of 40.

• Graph Construction. Our analysis showed that the k-nearest-neighbor graph
generally performs better than the ε-neighborhood graph. We have identified good
performance for k > 7. Therefore, we use a k-nearest neighbor graph with k = 12.
Furthermore, we have seen that weighted and unweighted edges result in around
the same accuracy, with a slight advantage for weighted edges. Therefore, we
use weighted edges. Both undirected edges and omitting self-references result in
higher accuracy as well and we choose to use these options.

• Label Propagation. We found that that LabelSpreading performs slightly better
than LabelPropagation for high iteration numbers. Also, the α value does not have
great impact on the performance, as long as it is not 0 or 1. Therefore, we use
LabelSpreading with the default value α = 0.2 and with 15 iterations.

• Pre-Processing. Our comparisons show that keeping all letters and hyphens
results in a clearly better performance than just keeping German letters. Therefore,
we use this type of pre-processing and keep the -handling and text saving variants
to their defaults (muß → muss, and saving of all texts into a single line). After
embeddings generation, this leads to 188, 031 unique words.

Accuracy Top3 Accuracy
fastText 62% 79%
word2vec 41% 56%

Table 4.2.: Accuracy and Top3 Accuracy of optimized configurations for fastText and
word2vec embeddings

The resulting accuracies are shown in Table 4.2. The table also shows the “top3 accuracy”,
which is the share of the correct class being within the top 3 of the candidate classes. The
values are based on training with 3, 277 words over 2, 552 synsets. The test set contains
2, 887 words. Combining the best performing parameters into optimized configurations
has a considerable effect on the resulting performance. For fastText, now 61% of the
predictions on the test set are correct, compared to 51% (by keeping words with hyphens).
Same for word2vec, where accuracy is now 41% when it was previously around 32% (by
choosing a high iteration number during embedding generation). The top3 accuracy
behaves accordingly - for both configurations, it is around 15% higher than the accuracy
itself.
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(a) fastText (b) word2vec

Figure 4.9.: Synset distributions of optimized configurations for fastText and word2vec
embeddings

In Figure 4.9, we have visualized the synset distributions of each optimized configu-
ration.2 Training words are included in this view. For both configuration types, the
mean size is 73.7 words per synset. For fastText, all words have received a label, but for
word2vec, 14 wordx were not labeled. While the distributions look similar overall, we
can see that with fastText slightly more smaller synsets were produced (median size 58,
max size 567), while with word2vec more medium and large synsets were produced
(median size 61, max size 591).

An automatic test can just verify whether or not the existing thesaurus’ words were clas-
sified as intended. In this quantitative evaluation, we assumed that good performance
on the existing thesaurus generalizes to good performance over all words of the text
corpus. In the next chapter, the manual (qualitative) evaluation, we try to verify this
assumption and manually rate the prediction quality of the optimized configurations.

2These synset distributions correspond to a specific training/test split, in contrary to accuracy and top3
accuracy before, where the value was averaged over three splits with different random seeds.
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We conducted multiple manual evaluations to learn more about the predictions that
get produced by label propagation. This is especially important since an automatic
evaluation of the prediction quality on words, that were not part of the original thesaurus,
is not possible. We evaluated predictions for the two optimized configurations from
Chapter 4. In the Quantitative Evaluation, we split the existing thesaurus into training
and test set to evaluate the performance on the test set. In the Qualitative Evaluation, all
algorithms are trained with the full thesaurus.

Per manual evaluation, a list of 54 synsets was shown to human raters. For each of
the synsets, the synset’s training words as well as 10 words that were predicted for it,
were listed.1 In a group of two persons, we manually rated whether a word fit into the
suggested synset. An exemplary manually labeled synset is shown in Figure 5.1. We
used these three rating levels:

0 Not similar to the predicted synset
1 Similar to the predicted synset, because the word belongs to the same seman-

tic area. Examples: “kraftfahrzeug” for a synset with concept “dienstwagen”,
“zeitungsanzeigen” for a synset with concept “zeitungsausträger”.

2 Should be added to the synset.

We needed to develop a process that determines which synsets and which of the synsets’
predictions should be shown to the raters. Therefore, we split our qualitative evaluation
into two parts: Pre-study and main study. With the pre-study, we determine how certain
characteristics, that can be used for synset and prediction selection, correlate with high

Figure 5.1.: Screen shot of a manually evaluated synset

1Or less, if there were less than 10 predictions for the respective synset
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Figure 5.2.: Pre-Study Selection Procedure

human rating. We then made use of those correlations to select suitable candidates for
the main studies. Our goal was to show predictions with characteristics that correlate
with high rating.

At the end of this chapter, we discuss whether or not the results from the quantitative
evaluation could be verified.

5.1. Pre-Study

We want to analyze if and how these three characteristics correlate with prediction
quality:

(a) Number of training words in synset (#ytrain)
(b) Number of suggested words for synset (#ypred)
(c) Confidence

As an example: For a synset with a small number of predictions, the predictions might
have a higher quality than the ones for a synset with lots of predictions (or reverse).

The pre-study procedure is shown in Figure 5.2. We group all synsets according to
attributes (a) and (b). For example, group 6 groups all synsets with a medium size of
training words (between 45% and 55% quantile, inclusive) and with a high number of
predicted words (over or equal the 90% quantile). We set the quantile limits inclusive.
Therefore, a synset can be assigned to multiple groups. The reason for setting the limits
inclusive is that often there is not enough variety in the possible values. For example,
the 10% quantile of #ytrain is 2, which is also the lowest possible training synset size.

From each of the nine groups, we draw six random synsets, where each synset can be
drawn only one time. We order the predictions within each synset by the confidence
score. For two of the six synsets, words with high confidence score are shown first. For
another two, words with low confidence are shown first. For the last two, a random
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(a) Prediction Confidence (b) Number of predictions for synset

(c) Number of training words in synset

Figure 5.3.: Correlation analysis between high rating and prediction characteristics

order is applied. The first 10 predictions of each of these synsets are then shown to the
human evaluators. The characteristics that led to a selection are stored invisibly and are
used for calculating the correlations, after the ratings have been submitted.

Results We conducted the Pre-Study with the predictions of the optimized propagation
configuration with fastText embeddings. For the 54 drawn synsets, we rated an overall
of 500 words. 42.4% (212), received a score of 0, 42.0% (210) a score of 1, and 15.6% (78)
a score of 2.

The pairwise relationships between the three characteristics and the rating are shown
in Figure 5.3. The relationships are visualized as linear regression plots with a 95%
confidence interval using the data visualization library seaborn2. The actual data is

2https://seaborn.pydata.org, visited on Nov. 3, 2018
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5. Qualitative Evaluation

shown as scatter plot. The distribution of the respective variables is shown outside the
top and right axes. A confidence interval is an estimate that might contain the true value
of the parameter with a high probability (Keener 2010). The plots are annotated with
the Spearman’s rank correlation coefficients and p-values for the respective relationship.
The Spearman’s rank correlation coefficient describes how well the relationship between
two variables X and Y can be described by a monotonic function. There is a positive
correlation when large values of X have a tendency to be associated with large values
of Y and small values of X with small values of Y, and a negative correlation if the
relationship is vice-versa (“Spearman Rank Correlation Coefficient” 2008). A perfect
positive correlation results in a correlation coefficient of +1, a perfect negative correlation
in a coefficient of −1. When the correlation coefficient is close to 0, the variables are not
correlated. We can identify certain correlations:

• Moderate positive correlation (spearmanr = 0.4) between the prediction confidence
and the rating.

• Weak negative correlation (spearmanr = −0.2) between the number of predictions
for a synset and the rating.

• Weak positive correlation (spearmanr = 0.12) between number of training words in
a synset and the rating.

Under a significance level of α = 0.05, all correlations are significant (p < α). We
conclude from our results that we should filter for synsets with a high number of
training words and a low number of predicted words and then order predictions by
high confidence. This increases the likelihood for high human ratings.

5.2. Main Study

We conducted two main studies and for each we again start with selecting 54 synsets. A
synset could be subject to multiple main studies. We chose synsets with a high number
of training words (greater or equal 80% quantile) and a low number of predicted words
(smaller or equal 20% quantile). The suggestions were ordered by descending confidence
value, the top 10 were taken for rating by us.

Results The results are shown in Table 5.1.3 We note that our goal of selecting synsets
and predictions that have promising characteristics was successful. The results for
fastText are considerably better than they were in the pre-study. Only a 6.5% share of
the predicted words is not related at all to the original synset, compared to previously
over 40%. Like for the quantitative evaluation, the optimized configuration with fastText
embeddings performs better than with word2vec embeddings. For fastText, we receive

3Note: For word2vec, two persons individually evaluated the predictions. The results were then
averaged.
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Score (Share in %)
Variant 0 1 2
Propagation: fastText 6.5 63.9 29.6
Propagation: word2vec 62.2 29.6 8.2

Table 5.1.: Main Study Results, rounded to one decimal

a synonym rating for around 30% of the overall predictions. For wordvec, the result
is worse, with over 60% of the predictions not being related to the concept at all. The
humanly-rated difference in performance between the two embeddings types seems
to be even greater than the difference in the automatic quantitative evaluation. To
answer our question, whether or not the qualitative evaluation can verify the results
from quantitative evaluation: We could verify the difference in prediction performance
between fastText and word2vec embeddings. But, the performance values of the two
evaluations do not seem to be really comparable.

Up to now, we have collected performance results for the label propagation approach in
an automatic and in a manual fashion. We have not yet studied what these results really
mean: How does our approach compare to a simpler baseline approach? What kinds of
synsets have to be extended? Are all kinds of synsets extendable in the same way? We
will deal with these questions in the next chapter.
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In this chapter, we put our previous results into context. At first, we present a baseline
approach with the same objective as our label propagation configurations. This baseline
approach operates directly on word embeddings and uses a nearest-neighbor strategy
to suggest synset extensions. We compare its performance with the results reached with
label propagation. Via the comparison, we try to assess how much value is added by
using label propagation in our setting. We then qualitatively analyze the synsets in the
existing thesaurus and the synset suggestions from our manual studies. We deduce a set
of challenges that need to be coped with in order to provide good extension suggestions.
From that, we analyze why fastText embeddings have generally performed much better
than word2vec embeddings.

6.1. Baseline: k-nearest-neighbors of Synset Vector

Our label propagation approaches operate on word embeddings and add additional
layers on top of them: Graph construction and label propagation. For comparison, we
defined a baseline approach that directly uses the word embeddings. It has the same
goal: Extending existing training synsets by predicting the synsets labels for unlabeled
words from the text corpus. It is inspired by the “Synset Embeddings” concept by Rothe
and Schütze (2015), but we define synset embeddings in a simpler way.

For every training synset, we average the word embeddings of the training words
contained in this synset. We call this average vector “synset vector” (synset embedding).
We label the k closest words of a synset vector with the synset vector’s label. If a word
is in the k-neighborhood of multiple synset vectors, the closest synset vector applies, i.e.
the one with the highest cosine similarity.

As an example, in Figure 6.1, the training synset consists of “wordA” and “wordB”. They
are averaged to a common synset vector. Its closest two word vectors, “wordX” and
“wordY”, are labeled with the synset. “wordZ” is not among the two nearest neighbors
of the synset vector and therefore not assigned to the synset, although it is very close to
“wordB”.
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Figure 6.1.: k-nearest-neighbors of synset vector with k = 2. The training words of a
synset determine an average vector. Words in its neighborhood get labeled
with the respective label.

6.1.1. Quantitative and Qualitative Evaluation

Quantitative Results

We compare the baseline with the fastText and word2vec word embeddings of our
optimized pipeline configuration. Like in the parameter studies in Chapter 4, the
evaluation was performed on three different training/test samplings of the thesaurus.
The results over the three samplings were averaged.

In Figure 6.2, the accuracy results with varying parameter k are shown. For both
embedding types, accuracy continuously increases with increasing k. This increase
intuitively makes sense: All predictions of a run with k = n− 1 stay the same for a run
with k = n. Increasing k just means that each synset expands its range of words that get
labeled with the respective synset. Words that already received a label for lower k stay
in the same synset, because the synset’s vector is still the closest one to the word. From
around k = 25, the accuracy reaches around the same levels as the label propagation
approaches. It does not change noticeably for higher k and converges at around 65%.

Table 6.1 shows a comparison between our optimized label propagation performances
and the baseline for a high k, k = 200. For fastText, the baseline reaches a slightly
higher accuracy than our best label propagation configuration (65% against 62%). For
word2vec, a slightly lower performance than label propagation is reached (40% against
41%). We also compare the top3 accuracy. For the baseline approach, we calculate
this metric by storing the three closest synsets that have an individual word in their
k-neighborhood, check if the correct test synset is included, and average over all test
words. The top3 accuracies of baseline and label propagation are similar, although the
label propagation approaches receive slightly higher values. Interestingly, the baseline
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Figure 6.2.: Accuracy in a k parameter study for the synset vector baseline approach

reached this performance while, at the same time, not labeling some all words in the test
set (the test set contained 2, 887 words). For fastText, around 4% (124 words, averaged
from three runs) of the test set words were not labeled. For word2vec, the number
was even higher, with around 8% (238 words) test words not labeled. During label
propagation, all test words were labeled.

Accuracy Top3 Accuracy
fastText 65% 77%
word2vec 40% 54%

(a) Baseline (k = 200)

Accuracy Top3 Accuracy
fastText 62% 79%
word2vec 41% 56%

(b) Label propagation configurations

Table 6.1.: Accuracy and Top3 Accuracy for Baseline and Label Propagation compared

Figure 6.3 shows the synset size distributions.1 Most interestingly, we noticed that in
both cases, many words were not assigned a synset. For fastText, 81, 511 words did not
receive a label. For word2vec, the number is a bit lower with 68, 060. From the word
embeddings set, we know that we have around 190, 000 words that can have a label
and we have 2, 552 different synsets. If all synsets expanded without interfering with
each other, over 500, 000 words could theoretically been labeled. As not even all 190, 000
words received labels, we can see that many words are in the close neighborhood of
multiple synsets at once, while many words are not in the neighborhood of any synset
vector at all. In comparison, our label propagation approaches assigned a label to
almost all words (except for 14 for word2vec). Therefore, the synset mean and median
sizes are lower for the baseline than for the propagation approach. Comparing fastText
and word2vec, the difference is similar to the label propagation distribution - fastText
produces more smaller synsets than word2vec.

We see that our nearest-neighbor baseline resulted in around the same performance on

1Like in Chapter 4 , the synset size distributions correspond to an individual thesaurus training/test
split and are not averaged over multiple splits.
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(a) fastText. Mean size is 41.74, median size
is 34, max size 198.

(b) word2vec. Mean size is 47.01, median size
is 41, max size 193.

Figure 6.3.: Synset distributions of optimized configurations for fastText and word2vec
embeddings (2552 different synsets)

the test set as our label propagation configurations. We verify this result by conducting
manual evaluations on the baseline predictions as well.

Qualitative Results

Like in Chapter 5, we manually evaluate now the quality of the baseline’s proposed
predictions. We used the baseline with k = 30 and trained with the full thesaurus.2

For determining which predictions to show, we did not conduct a separate pre-study.
Instead, we assumed that a high number of training words would correlate with good
predictions as well. We selected 54 synsets with a high number of training words (greater
or equal 80%-quantile) and showed the top 10 predictions, ordered by their similarity
to the respective synset vector. We did not incorporate the of number of predicted
words into our synset selection process. Instead, we just required a minimum number
of 10 predicted words. We conducted an evaluation of the same prediction lists by two
separate persons and averaged the results.

The results are shown together in Table 6.2 (rounded to one decimal), together with
the propagation results. We see that baseline method generally performs better than
the propagation, it receives more synonym ratings and less “not similar” ratings. The
difference is not that big for fastText embeddings. For word2vec embeddings though,
the baseline method receives much better ratings than the propagation approach. This
is surprising, as we could not see that difference in performance in the quantitative
evaluation. Rather, the label propagation approach for word2vec performed even slightly
better. For word2vec, one of the two evaluations does not seem to be representative for
its actual performance.

2k = 30 should be a sufficient value as we receive enough synsets with a size of 10 words.
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Score (Share in %)
Variant 0 1 2
Baseline: fastText 2.7 61.5 35.8
Propagation: fastText 6.5 63.9 29.6
Baseline: word2vec 35.6 42.9 21, 5
Propagation: word2vec 62.2 29.6 8.2

Table 6.2.: Main Study Results: Baseline vs. Propagation

Summary

From our evaluations, we cannot see an advantage for the label propagation approach
compared to the baseline method. Instead, the baseline even slightly over-performs
label propagation with fastText in terms of accuracy, and generally performs better in
the manual evaluation. The lower complexity of the baseline approach and the fact
that it needs significantly less resources and computation time, are more advantages of
this approach in comparison to our label propagation. As the order of performance is
comparable, we want to learn how much the predictions actually differ from each other.
It might be that label propagation actually returns almost the same predictions as our
baseline and does not do anything significantly different.

6.1.2. Prediction Similarity Comparison

Here, we investigate the potential differences between the predictions of baseline and
label propagation. We first compare the predictions on the test set for a specific
training/test split. Then, we compare the predictions for selected synsets visually and
try to learn if there are distinct patterns that differentiate label propagation and the
baseline.

Quantitative Comparison

We analyze how the predictions on the same test set differ from each other, depending
on the method used. We compare four methods:

• Optimized Label Propagation Configuration, fastText (lp_ft)
• Optimized Label Propagation Configuration, word2vec (lp_w2v)
• Synset Vector Baseline with k = 200, fastText (bl_200_ft)
• Synset Vector Baseline with k = 200, wrord2vec (bl_200_w2v)

All methods were trained on the same training set and evaluated on the same test set
(no averaging over multiple training/test splits took place). The size of the test set is
2887. bl_200_ft did not predict a label for 4% of the test data, bl_200_w2v for 9% of the

57



6. Assessment and Further Refinements

lp_ft lp_w2v bl_200_ft bl_200_w2v
lp_ft 100% / 61% 36% / 72% 65% / 73% 34% / 72%
lp_w2v 100% / 41% 35% / 75% 51% / 49%
bl_200_ft 100% / 65% 35% / 75%
bl_200_w2v 100% / 40%

Table 6.3.: Different methods compared for their prediction differences on test set. Left
number: Share of equal test predictions, right number: Accuracy when
combining predictions (one of the two methods matched the test).

test data. The results are shown in Table 6.3. Each table cell describes the intersection of
the two methods given in row and column. The left number describes the share of equal
test predictions. The right number shows the accuracy when combining the predictions
of both methods, i.e. the share that at least one of the two methods matched a test.
The table is symmetrical, therefore the values for the empty cells can be deduced by
mirroring the existing values.

We note that a label propagation method and its baseline counterpart share a relatively
high percentage of equal predictions. Combining the propagation and the baseline
predictions produces a better accuracy than the methods individually. But it does not
offer an significant advantage than when combining fastText and word2vec predictions
of the same method. The combined accuracy still performs worse than the top3 accuracy
metric of an individual method. Therefore, we conclude that label propagation does
suggest different predictions than its baseline equivalent. But the different predictions
do not seem to be valuable for an overall higher performance.

Visual Comparison

In Table 6.3, we have seen that the propagation method, to a certain extent, identifies
correct labellings that the baseline does not identify, and vice versa. We want to see
if there are distinct visual pattern in how these two methods select their predictions.
For fastText embeddings, we visualize two selected synsets and their closest 50 predic-
tions within both methods. We use the Tensorflow Embedding Projector3, where the
dimensionality is reduced from 400 to 2 via Principal Component Analysis (PCA). The
visualizations are shown in Figure 6.4.

From our intuition, we expected the baseline to predominantly predict words in the direct
neighborhood of the training words. We expected the propagation method’s predictions
to include chain-like structures that are not explainable via direct neighborhood.

The visualizations in Figure 6.4 do no resemble these intuitions. We cannot identify a
clear visual difference in the prediction behavior of the baseline and the propagation

3http://projector.tensorflow.orgvisited on Nov. 3, 2018
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(a) Synset predictions with “zinshöhe”
and “zahlungshöhe” as training
data

(b) Synset predictions with “milchver-
arbeitung” and “milchwirtschaft”
as training data

Figure 6.4.: Two synsets and their predictions visualized. Black: Training words, Blue:
Predicted by both propagation and baseline, Yellow: Propagation-only
prediction, Red: Baseline-only prediction.

method. On the contrary, in the left plot, we see a group of points that is far away from
both training words, but was suggested by the baseline, although there are many more
points that are closer to the training words. We also see in the left plot that all common
predictions are close to only one of the training words. In the right plot, this pattern is
not as strong. However, also here we see that considerably more common predictions
are close to one of the two training words. In general, in the right plot, we cannot see
such a strong distinction into groups of “predicted by both” and “predicted by one
specific method” like in the left visualization.

An explanation for that could be the dimensionality reduction. With PCA, only around
30% of the variance could be described. The remaining variance could just not be
enough to show the expected behavior. We conclude that a comparison by visualization is
difficult to use for finding differentiating patterns of propagation and baseline prediction
behavior.

6.1.3. Application of Propagation to Baseline

We have seen that the synset vector baseline on its own results in good performance, both
on a test set as well as via human rating. As an experiment, we apply label propagation
on the baseline graph and and evaluate whether we can increase performance. For
that, we interpret the synset vector baseline as a similarity graph. In this model, synset
vectors become graph nodes. We add edges from each synset vector to the k nearest
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words, where the edge weight corresponds to the cosine similarity. Here, we use k = 200.
As initial graph labeling, we label the synset nodes with the synset’s labels, while all
word nodes become unlabeled. Then, we apply LabelSpreading with α = 0.2 and 15
iterations.

The results are shown in Table 6.4. By applying label propagation on it, we really can
improve the performance of the baseline itself, although slightly. For fastText, accuracy
could be increased by 1 percent point, top3 by 2 percent points. The increase is higher
for word2vec embeddings, where 4 percent points for accuracy and 3 percent points for
top3 accuracy could be gained.

Accuracy Top3 Accuracy
fastText 66% 79%
word2vec 44% 57%

(a) Baseline with added Label Propagation

Accuracy Top3 Accuracy
fastText 65% 77%
word2vec 40% 54%

(b) Baseline (k = 200)

Table 6.4.: Accuracy and Top3 Accuracy for Baseline with added Label Propagation,
compared to Baseline itself

6.2. Challenges around Thesaurus Extension

By analyzing the existing thesaurus and the synset suggestions we rated in our manual
studies, we noted several aspects around thesaurus extension that make it challenging
to find the right synset extensions. They are shown and categorized in Table 6.5. There
are certain semantic challenges: Depending on the context, a word’s meaning can be
different. If there are only few training words, an algorithm might suggest words that
do not fit the anticipated word’s meaning. Another problem is connected to compound
words. Often in such a compound word, one word is more defining than the other, so
the less defining word should be varied to generate semantically similar suggestions.
The German language that we analyze has many of such compound words. But in
comparison to other languages, this is a rather rare phenomenon. So this problem might
not be that relevant any more when trying to extend a thesaurus which is not German.
Sometimes, the algorithm did not cope with this issue and suggested e.g. “us-börse” for
a concept around “milchwirtschaft”. Furthermore, we recognized that it is very hard
to decide if a broader term should be included in a synset with more specific terms, or
even more difficult, if a more specific word like “einkommenssteuerrecht” should be
added to a synset around “steuerrecht”.

Even more than semantic challenges, we noted several syntactic challenges. In the
existing thesaurus, many entries of a synset were made up of inflections of the same
words, words with the same word stem, different word splits or hyphenations or old
spellings/misspellings of a word. This applies also to the other kinds of syntactically
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Category Type Example
Semantic Challenges Context-dependent word

meaning
leiter (ladder vs. manager)

Identification of defining
word parts

milchwirtschaft (“milch” is
more defining)

Broader or more specific
terms

steuerrecht,
einkommenssteuerrecht

Syntactic Challenges Inflected words zeitungsträgern,
zeitungsträger

Same word stem stornierung, stornieren
Word splits eigentümerehegatten,

eigentümer ehergatten
Hyphenation zwölfmonatszeitraum,

zwölfmonats-zeitraum
Old spellings/Misspellings fitneß-studios, fitness-studio
Abbreviations ustk, ust-kartei
Numbers 12-monatsfrist,

zwölfmonatsfrist

Table 6.5.: Challenges around Thesaurus Extension

similar entries - abbreviations and use of numbers. Our algorithms could often find more
syntactically similar suggestions. While this is good for the algorithms’ performance,
the question occurs if finding syntactic variations is the goal of thesaurus extension.
Slight syntactic variations of words are not as interesting as synset suggestions. Instead
of using machine learning techniques, suggestions like these could be automatically
generated using more simple heuristics.

Why fastText performs better than word2vec The provided thesaurus contained many
synset entries that are only syntactic variations of each other. Also, in the qualitative
evaluation, we have given high ratings for these type of syntactic variations. These facts
can explain why fastText embeddings have continuously received higher ratings than
word2vec embeddings our evaluations. By examining the actual predictions, we can see
that fastText places great weight on syntactic similarity. Words that are syntacticly similar
are very likely to get assigned to close vectors. word2vec more often offers suggestions
not only based on syntactic similarity. With fastText embeddings, most suggestions
are slight variations of words that are already in the synset. An example is shown in
Table 6.6. The existing thesaurus that is used as a test set in the quantitative evaluation, as
well as our qualitative evaluation, seem to reward the behavior of fastText’s embeddings.
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Existing Synset Words fastText Propagation (Top 5) word2vec Propagation (Top 5)
kst-bescheid körperschaftsteuer-bescheids erstattungsjahre
kst-bescheide kst-bescheiden leistungsgebote
körperschaftsteuer-bescheid körperschaftsteuer-bescheide vek-bescheide
körperschaftsteuerbescheid körperschaftsteuerbescheide zuwendungsbestätigungsempfänger

körperschaftsteuerbescheiden umsatzsteuervorauszahlungsbescheide

Table 6.6.: Comparison between fastText and word2vec propagation results for a given
synset
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7. Conclusion and Future Work

Implementation Our first achievement was the introduction of a pipes and filters
architecture that modeled the entire thesaurus extension process. It splits the problem
into several, successive steps. For each step, hyper-parameters can be set, that affect the
step’s output. The pipeline is optimized for running many different hyper-parameter
configurations and calculating performance metrics. Each step of the pipeline can be
easily reimplemented or replaced, as long as input and output stay the same. Therefore,
the pipeline can serve as a base for further research, e.g. using other graph construction
approaches, or more sophisticated label propagation algorithms. Also, as the architecture
is independent from the problem domain, it could be used to evaluate thesaurus
extension in different contexts.

Quantitative Evaluation The crucial achievement of this chapter was the identification
of optimal hyper-parameter configurations through parameter-studies. We tried to
cover all important steps of our pipeline: pre-processing, embeddings generation, graph
construction, and label propagation. Although there exist more label propagation and
other graph-based machine learning approaches, we think it is sufficient to focus on
the basic algorithms shown here (LabelPropagation and LabelSpreading). The overall
success is depending on other properties.

While we feel as well quite comfortable with our work in the pre-processing phase and
the embedding generation, especially in the field of graph construction further research
would have been possible. Our results support this hypothesis: Pre-Processing and
embedding generation benefit all steps (and alternative naive approaches which operate
directly on the embeddings), not just label propagation. Graph construction is therefore
the crucial step which determines the method’s performance. Thus, future work should
definitely investigate more approaches or variations instead of only considering standard
similarity graphs. For example, Ravi and Diao (2015) propose a method to combine
two different types of graphs into an augmented graph: A knowledge graph like from
Freebase1 and a graph that is constructed out of word embeddings. They claim that
augmenting the Freebase graph with embeddings results in significant improvements
in quality, when applying graph-based semi-supervised learning algorithms like label
propagation. While Freebase was shut down, its data is still available for download. An

1Freebase was a free structured knowledge base for semantic data that was acquired by Google and
shutdown in 2016. See http://www.freebase.com, visited on Nov. 3, 2018
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alternative knowledge base would be Wikidata2.

Qualitative Evaluation Let us briefly recap why we think that a manual evaluation
of the predictions is necessary and important: We wanted to make sure that a good
performance on the thesaurus can be generalized to high performance on words in the
entire text corpus. We have to keep in mind that the thesaurus was created manually.
Therefore, it could be the case that only words with rather direct relations became part
of the initial synsets. Thus, a quantitative analysis alone seems to be insufficient for us.
And indeed, word2vec performs much worse in the qualitative evaluation than fastText,
in a degree we had not expected from the quantitative evaluation. We could therefore
support our claim from the previous chapter, that fastText predictions perform better
than word2vec one’s.

Although the design of the qualitative evaluation is debatable, we think it gives a good
first impression on the validity of our results. We selected synsets via their number
of training and predicted words and then sorted them according to their confidence.
Instead, we could have included the confidence already in the synset selection process.
By that, we could avoid selecting synsets where all predictions have a comparably low
confidence. As a consequence, we could decrease the number of low human ratings and
instead focus on promising suggestions.

During the entire process, we noted several aspects around thesaurus extension that
make it challenging to identify the right synset suggestions. Although it uses much
more resources, our complex label propagation algorithm was not able to overcome
these challenges better than our rather simple synset vector approach.

Final Remarks

The main idea of this thesis was to determine whether or not the theoretical idea to
combine the concepts of word embeddings, graph construction and label propagation
leads to good results for thesaurus extension. Our work and the subsequent, detailed
analysis showed that we have to refute our hypothesis, that the effort is worth it.

What could be the reasons for that? We do not have a definite answer for that, but want
to outline three possible reasons:

• German Language
• Context of Tax Law
• Global Consistency Attribute

2https://www.wikidata.org, visited on Nov. 3, 2018
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German Language Many semantic problems are language-specific. Especially, com-
pound words do not exist in many other languages, which would make word distinction
much easier. Each word would get taken into account separately and included within the
context of other words. Therefore, it would be interesting to compare our results with
a study that has a similar thesaurus and context, but in a different language. Another
problem that could be maybe solved by that is the relatively low number of training
data, although the data set is fairly large for a German one. In our thesaurus, after
pre-processing, the majority of synsets had only two members. It is possible that e.g. in
English, there could be much larger and qualitatively comparable thesauri. Better data
in the training phase could have a significant influence on the quality of the results. An
example for the availability of larger data sets is the recent publication of millions of
U.S. court decisions by the “Caselaw Access Project”3, with the goal to make analysis on
it possible. Such a large publication in German language is not likely because of the
much lower population. Evaluating our research on an English data set would therefore
be an interesting option.

Context of Tax Law Another potential reason could be the domain of tax law. Maybe,
this domain is structurally not suitable for thesaurus extension using label propagation.
An indication for this are the positive examples for a combination of word embeddings
and label propagation we noted in the introduction, e.g. by Google for learning emotion
associations. Therefore, it could be interesting to evaluate what happens if we extend a
thesaurus from another domain. An example would be medicine. There, old patient’s
records and typical courses of diseases are used to figure out new treatment plans.
Thus, from a user’s perspective, the scenario is comparably to the one of law. But
one could also choose a completely different context and analyze prose texts. It could
be an advantage, as well as a disadvantage that prose texts, compared to technical
texts, contain much more paraphrasing, and less information. An analysis could give
interesting insights on word embeddings, and word embeddings benefit all subsequent
steps, as we have discussed before.

Global Consistency in Graph However, we think that the most significant reason is the
apparent absence of global consistency within our similarity graph. From Section 2.4, we
know that the advantage of label propagation compared to nearest-neighbors algorithms
is the fact that it takes the overall structure into account. It works for problems that
satisfy the global consistency assumption, where points on the same structure are likely
to have the same label. However, performance was about the same for label propagation
and our nearest-neighbor baseline. Therefore, the global consistency assumption seems
not to hold for the graphs we constructed during this thesis. It would be valuable to
explore more graph approaches, potentially not constructed just from word embeddings,
but from a combination of multiple knowledge bases.

3https://case.law, visited on Nov. 6, 2018
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A. Proof: Euclidean instead of Cosine
Distance for Word Embeddings

When dealing with word embeddings, vectors of similar words are close with respect
to cosine distance (that is 1− cosine similarity), not with respect to euclidean distance.
To generate a k-nearest-neighbor graph out of the embeddings for later application of
label propagation, we need to calculate these cosine distances. Unfortunately, imple-
menting knn with cosine distance in sckit-learn resulted in memory errors. But: We can
circumvent this problem and still use euclidean distances to get to the same knn result.

We will show that cosine distance is directly related to the euclidean distance on
normalized vectors (unit length). Therefore, normalizing the embeddings will return
the same distance ordering for euclidean distance 1 as it would for cosine distances.

We know about Euclidean Distance:

eucdist(A, B) = ||A− B|| (A.1)

=
√
(A− B)T(A− B) (A.2)

And about the Cosine Distance:

cosdist (A, B) = 1− cos (A, B) (A.3)

= 1− A · B
||A||||B|| (A.4)

= 1− ATB
||A||||B|| (A.5)

= 1− ATB | As A and B have unit length (A.6)

1Same ordering, not the same distance values
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A. Proof: Euclidean instead of Cosine Distance for Word Embeddings

From A.2 we get:

eucdist(A, B) =
√
||A||2 − 2ATB + ||B||2

∣∣∣ As (A− B)T(A− B) = ∑(ai − bi)
2 (A.7)∣∣ = ∑ a2

i − 2 ∑ aibi + ∑ b2
i (A.8)

=
√

2(1− ATB) | As A and B have unit length (A.9)

And we can insert the cosine distance from A.6:

eucdist(A, B) =
√

2 cosdist (A, B) (A.10)

We see: If two vectors have a larger cosine distance than two others, they will, when
normalized, also have a larger euclidean distance.
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B. Difference between two
LabelPropagation Algorithms by Zhu et
al.

Here, we discuss the difference for the LabelPropagation algorithm between the original
paper (Zhu and Ghahramani 2002) and Zhu et al. (2005), Zhu’s doctoral thesis, where the
algorithm was given in a modified version. In Zhu and Ghahramani (2002), a transition
matrix field Tij describes the probability of jumping from node j to i. This is calculated
by normalizing the columns:

Tij = P(j→ i) =
wij

∑n
k=1 wkj

(B.1)

In comparison to that, Zhu et al. (2005), Tij corresponds to the probability of jumping
from node i to j, so normalizing the rows1:

Tij = P(j→ i) =
wij

∑n
k=1 wik

(B.2)

As the transition matrix from B.2 is automatically row-normalized, applying it iteratively
to Y will result in all rows of Y having 1 as sum, too, so Y can be directly interpreted as
a class probability matrix without explicit adjustment. In comparison to that, equation
B.1 requires the explicit row-normalization of Y during each iteration to maintain the
class probability interpretation. The repetitive row-normalization step can be bypassed
by row-normalizing T before iterating.

The two different calculations of the transition matrices lead to a slightly different
propagation. As Bodó and Csató (2015) observed, equation B.1 assigns greater weight to
points having fewer/distant neighbors. Following on our example graph from Section 2.4.3,
this becomes more clear. Figure B.1 shows the two transition matrices2 and their
respective Y(∞). The algorithms converge to different class distributions for nodes 3 and
4 - for Zhu and Ghahramani (2002), class A is valued stronger. This is because node
1, where class A is “flowing from”, has just one neighboring node, compared to node

1Row-normalization of a quadratic matrix M can be achieved by D−1 M, where D is the (weighted)
diagonal degree matrix, like we did it in algorithm 1.

2Because our affinity matrix W is symmetric, the non-row-normalized transition matrix from Zhu and
Ghahramani (2002) is just the transposed transition matrix from Zhu et al. (2005).

69



B. Difference between two LabelPropagation Algorithms by Zhu et al.

1

A

2

B

53

4

(a) Exemplary Graph G

1 2 3 4 5


1 0 0 1 0 0
2 0 0 1/2 0 1/2

3 1/3 1/3 0 1/3 0
4 0 0 1 0 0
5 0 1 0 0 0

(b) Transition Matrix T according to
Zhu et al. (2005)

1 2 3 4 5


1 0 0 1 0 0
2 0 0 1/4 0 3/4

3 2/5 1/5 0 2/5 0
4 0 0 1 0 0
5 0 1 0 0 0

(c) Row-normalized Transition Matrix
T according to Zhu and Ghahra-
mani (2002)

A B


1 1 0
2 0 1
3 1/2 1/2

4 1/2 1/2

5 0 1

(d) Y(∞) according to Zhu et al. (2005)

A B


1 1 0
2 0 1
3 2/3 1/3

4 2/3 1/3

5 0 1

(e) Y(∞) according to Zhu and Ghahra-
mani (2002)

Figure B.1.: Differently calculated transition matrices and respective Y(∞) for exemplary
graph G

2, root for class B, with two neighboring nodes. The label from node 1 therefore has a
greater influence on the nodes 3 and 4 than the one from node 2.

A clear statement on which of these two algorithms performs better, is difficult. In our
example, both resulting class probabilities could be intuitively justified. Bodó and Csató
(2015) recommend the version by Zhu and Ghahramani (2002), as it results in a “natural,
more balanced labeling”. On the other hand, most well-cited research seems to use the
version by Zhu et al. (2005). Therefore, we chose to use the latter version as well.
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